Skip to content

Simulation

Simulation

Bases: BaseSimulation, CallbackMixin

Source code in passengersim/driver.py
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
class Simulation(BaseSimulation, CallbackMixin):
    def __init__(
        self,
        config: Config,
        output_dir: pathlib.Path | None = None,
    ):
        """
        Initialize a Simulation instance.

        Parameters
        ----------
        config : Config
            The simulation configuration object. Will be revalidated during
            initialization.
        output_dir : pathlib.Path or None, optional
            Directory for output files. If None, a temporary directory
            will be created automatically.

        Notes
        -----
        This initializes the simulation with default parameters including
        DCP lists, choice models, and various data structures for tracking
        simulation results.
        """
        revalidate(config)
        super().__init__(config, output_dir)
        if config.simulation_controls.write_raw_files:
            try:
                from passengersim_core.utils import FileWriter
            except ImportError:
                self.file_writer = None
            else:
                self.file_writer = FileWriter.FileWriter(output_dir)
        else:
            self.file_writer = None
        self.db_writer = None
        self.dcp_list = [63, 56, 49, 42, 35, 31, 28, 24, 21, 17, 14, 10, 7, 5, 3, 1, 0]
        self.classes = []
        self.fare_sales_by_dcp = defaultdict(int)
        self.fare_sales_by_carrier_dcp = defaultdict(int)
        self.fare_details_sold = defaultdict(int)
        self.fare_details_sold_business = defaultdict(int)
        self.fare_details_revenue = defaultdict(float)
        self.demand_multiplier = 1.0
        self.capacity_multiplier = 1.0
        self.airports = {}
        self.choice_models = {}
        self.frat5curves = {}
        self.load_factor_curves = {}
        self.todd_curves = {}
        self.debug = False
        self.update_frequency = None
        self.random_generator = passengersim.core.Generator(42)
        self.sample_done_callback = lambda n, n_total: None
        self.choice_set_file = None
        self.choice_set_obs = 0
        self.choice_set_mkts = []
        self.segmentation_data_by_timeframe: dict[int, pd.DataFrame] = {}
        """Bookings and revenue segmentation by timeframe.

        The key is the trial number, and the value is a DataFrame with a
        breakdown of bookings and revenue by timeframe, customer segment,
        carrier, and booking class.
        """

        self.bid_price_traces: dict[int, Any] = {}
        """Bid price traces for each carrier.

        The key is the trial number, and the value is a dictionary with
        carrier names as keys and bid price traces as values."""

        self.displacement_traces: dict[int, Any] = {}
        """Displacement cost traces for each carrier.

        The key is the trial number, and the value is a dictionary with
        carrier names as keys and displacement cost traces as values."""

        self._fare_restriction_mapping = {}
        """Mapping of fare restriction names to restriction numbers."""

        self._fare_restriction_list = []
        """List of fare restriction names in the order they were added."""

        self._initialize(config)
        if not config.db:
            self.cnx = database.Database()
        else:
            self.cnx = database.Database(
                engine=config.db.engine,
                filename=config.db.filename,
                pragmas=config.db.pragmas,
                commit_count_delay=config.db.commit_count_delay,
            )
        if self.cnx.is_open:
            database.tables.create_table_leg_defs(self.cnx._connection, self.eng.legs)
            database.tables.create_table_fare_defs(self.cnx._connection, self.eng.fares)
            database.tables.create_table_fare_restriction_defs(self.cnx._connection, self._fare_restriction_list)
            database.tables.create_table_path_defs(self.cnx._connection, self.eng.paths)
            if config.db != ":memory:":
                self.cnx.save_configs(config)

        self.callback_data = CallbackData()
        """Data stored from callbacks.

        This allows a user to store arbitrary data during a simulation using callbacks,
        and access it later.
        """

    @property
    def _eng(self) -> SimulationEngine:
        """
        Access to the underlying simulation engine.

        Returns
        -------
        SimulationEngine
            The core simulation engine instance.
        """
        return self.eng

    @property
    def base_time(self) -> int:
        """
        The base time for the simulation.

        Returns
        -------
        int
            The base time in seconds since the epoch.
        """
        return self.eng.base_time

    @property
    def snapshot_filters(self) -> list[SnapshotFilter] | None:
        """
        Get the snapshot filters for the simulation.

        Returns
        -------
        list[SnapshotFilter] or None
            List of snapshot filter objects, or None if simulation
            is not initialized.
        """
        try:
            sim = self.eng
        except AttributeError:
            return None
        return sim.snapshot_filters

    @snapshot_filters.setter
    def snapshot_filters(self, x: list[SnapshotFilter]):
        """
        Set the snapshot filters for the simulation.

        Parameters
        ----------
        x : list[SnapshotFilter]
            List of snapshot filter objects to set.

        Raises
        ------
        ValueError
            If the simulation is not initialized.
        """
        try:
            sim = self.eng
        except AttributeError as err:
            raise ValueError("sim not initialized, cannot set snapshot_filters") from err
        sim.snapshot_filters = x

    def _initialize(self, config: Config):
        """
        Initialize all simulation components.

        Parameters
        ----------
        config : Config
            The simulation configuration object containing all settings
            and parameters for initialization.

        Notes
        -----
        This method orchestrates the initialization of all simulation
        components in the correct order, including the simulation engine,
        parameters, carriers, airports, demands, fares, and various curves.
        """
        self._init_sim_and_parms(config)
        self._init_circuity(config)
        self._init_rm_systems(config)
        self._init_todd_curves(config)
        self._init_choice_models(config)
        self._init_frat5_curves(config)
        self._init_blf_curves(config)
        self._init_load_factor_curves(config)
        self._init_carriers(config)
        self._init_booking_curves(config)
        self._init_airports(config)
        self._initialize_leg_cabin_bucket(config)
        self._init_demands(config)
        self._init_fares(config)
        logger.info("Connecting markets")
        self.eng.connect_markets()
        self.db_writer = DbWriter("db", config, self.eng)

    def _init_sim_and_parms(self, config):
        """
        Initialize the simulation engine and parameters.

        Parameters
        ----------
        config : Config
            Configuration object containing simulation parameters and settings.

        Notes
        -----
        This method creates the core simulation engine instance and configures
        it with parameters from the config, including demand/capacity multipliers,
        random seed, DCP settings, and choice set capture options.
        """
        logger.info("Initializing simulation engine parameters")
        self.eng = passengersim.core.SimulationEngine(name=config.scenario)
        self.eng.config = config
        self.eng.random_generator = self.random_generator
        self.eng.snapshot_filters = config.snapshot_filters
        for pname, pvalue in config.simulation_controls:
            if pname == "demand_multiplier":
                self.demand_multiplier = pvalue
            elif pname == "capacity_multiplier":
                self.capacity_multiplier = pvalue
            elif pname == "write_raw_files":
                self.write_raw_files = pvalue
            elif pname == "random_seed":
                self.random_generator.seed(pvalue)
            elif pname == "update_frequency":
                self.update_frequency = pvalue
            elif pname == "capture_choice_set_file":
                if len(pvalue) > 0:
                    self.eng.set_parm("capture_choice_set", 1)
                    self.choice_set_file = open(pvalue, "w")
                    cols = self.eng.choice_set_columns()
                    tmp = ",".join(cols)
                    print(tmp, file=self.choice_set_file)
            elif pname == "capture_choice_set_obs":
                self.choice_set_obs = pvalue
            elif pname == "capture_choice_set_mkts":
                self.choice_set_mkts = pvalue

            # These parameters are not used directly in the core, but leave them listed
            # for now to not break config files reading
            elif pname in [
                "base_date",
                "capture_competitor_data",
                "dcp_hour",
                "double_capacity_until",
                "dwm_lite",
                "show_progress_bar",
                "simple_k_factor",
                "segment_k_factor",
                "simple_cv100",
                "timeframe_demand_allocation",
                "tot_z_factor",
                "allow_unused_restrictions",
                "additional_settings",
            ]:
                pass
            else:
                self.eng.set_parm(pname, float(pvalue))
        for pname, pvalue in config.simulation_controls.model_extra.items():
            print(f"extra simulation setting: {pname} = ", float(pvalue))
            self.eng.set_parm(pname, float(pvalue))
        if config.simulation_controls.additional_settings:
            self.eng.additional_settings(**config.simulation_controls.additional_settings)

        # There is a default array of DCPs, we'll override it with the data from the
        # input file (if available)
        if len(config.dcps) > 0:
            self.dcp_list = []
            for dcp_index, days_prior in enumerate(config.dcps):
                self.eng.add_dcp(dcp_index, days_prior)
                self.dcp_list.append(days_prior)
            # We need to add the last DCP, which is always 0, if not already in the list
            if self.dcp_list[-1] != 0:
                self.eng.add_dcp(len(self.dcp_list), 0)
                self.dcp_list.append(0)

    def _init_circuity(self, config):
        """
        Initialize circuity rules for the simulation.

        Parameters
        ----------
        config : Config
            Configuration object containing circuity rules.

        Notes
        -----
        Circuity rules define how passengers can connect through hubs
        and intermediate airports in their journey.
        """
        logger.info("Initializing circuity rules")
        for rule in config.circuity_rules:
            # Flatten the object into a dictionary,
            # SimulationEngine will iterate over it
            self.eng.add_circuity_rule(dict(rule))

    def _init_rm_system(self, rm_name: str, rm_system: RmSystemConfig, config: Config):
        """
        Initialize a revenue management system.

        Parameters
        ----------
        rm_name : str
            Name identifier for the RM system.
        rm_system : RmSystemConfig
            Configuration object for the RM system.
        config : Config
            Overall simulation configuration.

        Notes
        -----
        This method sets up a revenue management system with its availability
        control settings and associated processes for demand forecasting,
        optimization, and other RM functions.
        """
        from passengersim_core.carrier.rm_system import Rm_System

        logger.info("Initializing RM system %s", rm_name)
        x = self.rm_systems[rm_name] = Rm_System(rm_name)
        x.availability_control = rm_system.availability_control
        for process_name, process in rm_system.processes.items():
            step_list = [s._factory() for s in process]
            for s in step_list:
                s.use_config(config)
            x.add_process(process_name, step_list)

    def _init_rm_systems(self, config):
        """
        Initialize all revenue management systems.

        Parameters
        ----------
        config : Config
            Configuration object containing RM system definitions.

        Notes
        -----
        This method initializes each RM system defined in the configuration,
        setting up their availability controls and associated processes.
        """
        self.rm_systems = {}
        for rm_name, rm_system in config.rm_systems.items():
            self._init_rm_system(rm_name, rm_system, config)

    def _init_todd_curves(self, config):
        """
        Initialize TODD (Time-Of-Departure Demand) curves.

        Parameters
        ----------
        config : Config
            Configuration object containing TODD curve definitions.

        Notes
        -----
        TODD curves model how demand varies as the departure time approaches,
        which is crucial for revenue management optimization.
        """
        logger.info("Initializing TODD curves")
        for todd_name, todd in config.todd_curves.items():
            dwm = DecisionWindow(todd_name)
            if todd.k_factor:
                dwm.k_factor = todd.k_factor
            if todd.min_distance:
                dwm.min_distance = todd.min_distance
            if todd.probabilities:
                dwm.dwm_tod = list(todd.probabilities.values())
            self.todd_curves[todd_name] = dwm

    def _get_fare_restriction_num(self, restriction_name: str, *, ignore_when_missing: bool = False):
        """
        Get the numeric identifier for a fare restriction name.

        Parameters
        ----------
        restriction_name : str
            The name of the fare restriction.
        ignore_when_missing : bool, default False
            If True, return None when the restriction is not found instead
            of creating a new mapping.

        Returns
        -------
        int or None
            The numeric identifier for the restriction, or None if
            ignore_when_missing is True and the restriction is not found.
        """
        r = str(restriction_name).casefold()
        if r not in self._fare_restriction_mapping:
            if ignore_when_missing:
                return None
            self._fare_restriction_mapping[r] = len(self._fare_restriction_mapping) + 1
            self._fare_restriction_list.append(r)
        return self._fare_restriction_mapping[r]

    def parse_restriction_flags(self, restriction_flags: int) -> list[str]:
        """
        Convert restriction flags to a list of restriction names.

        Parameters
        ----------
        restriction_flags : int
            Integer bit flags representing which restrictions are active.

        Returns
        -------
        list[str]
            List of restriction names corresponding to the set flags.
        """
        result = []
        rest_num = 1
        rest_names = self._fare_restriction_list
        while restriction_flags:
            if restriction_flags & 1:
                result.append(rest_names[rest_num - 1])
            rest_num += 1
            restriction_flags >>= 1
        return result

    def get_restriction_name(self, restriction_num: int) -> str:
        """
        Convert restriction number to a restriction name.

        Parameters
        ----------
        restriction_num : int
            The numeric identifier for the restriction (must be >= 1).

        Returns
        -------
        str
            The name of the restriction.

        Raises
        ------
        IndexError
            If restriction_num is less than 1 or exceeds the number
            of defined restrictions.
        """
        if restriction_num < 1:
            raise IndexError(restriction_num)
        return self._fare_restriction_list[restriction_num - 1]

    def _init_choice_models(self, config):
        """
        Initialize customer choice models.

        Parameters
        ----------
        config : Config
            Configuration object containing choice model definitions.

        Notes
        -----
        Choice models determine how passengers select among available
        flight options based on factors like price, schedule, and
        service attributes.
        """
        logger.info("Initializing choice models")
        for cm_name, cm in config.choice_models.items():
            x = passengersim.core.ChoiceModel(cm_name, cm.kind, random_generator=self.random_generator)
            for pname, pvalue in cm:
                if pname in ("kind", "name") or pvalue is None:
                    continue

                if pname == "todd_curve":
                    tmp_dwm = self.todd_curves[pvalue]
                    x.add_dwm(tmp_dwm)
                elif pname == "early_dep" and pvalue is not None:
                    x.early_dep_offset = pvalue["offset"]
                    x.early_dep_slope = pvalue["slope"]
                    x.early_dep_beta = pvalue["beta"]
                elif pname == "late_arr" and pvalue is not None:
                    x.late_arr_offset = pvalue["offset"]
                    x.late_arr_slope = pvalue["slope"]
                    x.late_arr_beta = pvalue["beta"]
                elif pname == "replanning" and pvalue is not None:
                    x.replanning_alpha = pvalue[0]
                    x.replanning_beta = pvalue[1]
                elif pname == "restrictions":
                    for rname, rvalue in pvalue.items():
                        restriction_num = self._get_fare_restriction_num(rname)
                        if isinstance(rvalue, list | tuple):
                            x.add_restriction(restriction_num, *rvalue)
                        else:
                            x.add_restriction(restriction_num, rvalue)
                elif isinstance(pvalue, list | tuple):
                    x.add_parm(pname, *pvalue)
                else:
                    x.add_parm(pname, pvalue)
            self.choice_models[cm_name] = x

    def _init_frat5_curves(self, config):
        """
        Initialize FRAT5 curves for revenue management.

        Parameters
        ----------
        config : Config
            Configuration object containing FRAT5 curve definitions.

        Notes
        -----
        FRAT5 curves define the fare ratio at which half (0.5) of the
        customers will buy up to the higher fare. These curves define how
        fare ratios change over time as departure approaches, used for revenue
        optimization decisions.
        """
        logger.info("Initializing Frat5 curves")
        for f5_name, f5_data in config.frat5_curves.items():
            f5 = Frat5(f5_name)
            # ensure that the curve is sorted in descending order by days prior
            sorted_days_prior = reversed(sorted(f5_data.curve.keys()))
            for days_prior in sorted_days_prior:
                val = f5_data.curve[days_prior]
                f5.add_vals(val)
            f5.max_cap = f5_data.max_cap
            self.eng.add_frat5(f5)
            self.frat5curves[f5_name] = f5

    def _init_blf_curves(self, config):
        """These are currently grabbed by the RmStep"""
        pass

    def _init_load_factor_curves(self, config):
        logger.info("Initializing load factor curves")
        for lf_name, lf_curve in config.load_factor_curves.items():
            self.load_factor_curves[lf_name] = lf_curve

    def _init_carriers(self, config: Config):
        """
        Initialize carriers and their revenue management systems.

        Parameters
        ----------
        config : Config
            Configuration object containing carrier definitions including
            their associated revenue management systems.

        Notes
        -----
        This method sets up each carrier with its revenue management system,
        creating the necessary objects for managing inventory, pricing,
        and booking decisions.
        """
        logger.info("Initializing carriers")
        self.carriers_dict = {}
        self.rm_callbacks = {}
        try:
            old_style_std_rm_systems = standard_rm_systems_raw()
        except FileNotFoundError:
            old_style_std_rm_systems = {}
        for carrier_name, carrier_config in config.carriers.items():
            rm_is_callback = False
            # if `carrier_config.rm_system_options` is defined, it is a callback-style RM system
            if carrier_config.rm_system_options is not None and carrier_config.rm_system_options is not False:
                # Define a callback-style RM system for this carrier
                system_def = carrier_config.rm_system_options.copy()
                system_def.pop("name", None)  # remove name if present
                system_class = get_registered_rm_system(carrier_config.rm_system)
                if "dcps" not in system_def:
                    system_def["dcps"] = config.dcps
                rm_sys = system_class(carrier=carrier_name, **system_def)
                self.rm_callbacks[carrier_name] = rm_sys
                rm_is_callback = True
            # otherwise, if `rm_system_options` is not explicitly False, and
            # the RM system name is NOT defined in the config nor in the old-style standard RM systems list,
            # but it IS a registered callback-style RM system, then also treat it as a callback-style RM system
            elif (
                carrier_config.rm_system_options is not False
                and carrier_config.rm_system not in config.rm_systems
                and carrier_config.rm_system not in old_style_std_rm_systems
                and check_registered_rm_system(carrier_config.rm_system)
            ):
                # Define a callback-style RM system with all default config for this carrier
                system_class = get_registered_rm_system(carrier_config.rm_system)
                rm_sys = system_class(carrier=carrier_name, dcps=config.dcps)
                self.rm_callbacks[carrier_name] = rm_sys
                rm_is_callback = True
            else:
                # Old-style RM system setup
                try:
                    rm_sys = self.rm_systems[carrier_config.rm_system]
                except KeyError:
                    config._load_std_rm_system(carrier_config.rm_system)
                    self._init_rm_system(
                        carrier_config.rm_system,
                        config.rm_systems[carrier_config.rm_system],
                        config,
                    )
                    rm_sys = self.rm_systems[carrier_config.rm_system]
            availability_control = rm_sys.availability_control
            carrier = passengersim.core.Carrier(carrier_name, availability_control)
            self.carriers_dict[carrier_name] = carrier
            if rm_is_callback:
                carrier.rm_system = None
                self.daily_callback(rm_sys)
            else:
                carrier.rm_system = self.rm_systems[carrier_config.rm_system]
            carrier.truncation_rule = carrier_config.truncation_rule
            carrier.proration_rule = carrier_config.proration_rule
            carrier.history_length = carrier_config.history_length
            carrier.cp_algorithm = carrier_config.cp_algorithm
            carrier.cp_record_highest_closed_as_open = carrier_config.cp_record_highest_closed_as_open
            carrier.cp_quantize = carrier_config.cp_quantize
            carrier.cp_scale = carrier_config.cp_scale
            carrier.cp_record = carrier_config.cp_record
            if carrier_config.cp_elasticity is not None:
                carrier.cp_elasticity = carrier_config.cp_elasticity
            frat5_name = carrier_config.frat5
            if not frat5_name and carrier_config.rm_system in config.rm_systems:
                frat5_name = config.rm_systems[carrier_config.rm_system].frat5
            if frat5_name is not None and frat5_name != "":
                # We want a deep copy of the Frat5 curve,
                # in case two carriers are using the same curve,
                # and we want to adjust one of them using ML
                try:
                    f5_data = config.frat5_curves[frat5_name]
                except KeyError:
                    config._load_std_frat5(frat5_name)
                    f5_data = config.frat5_curves[frat5_name]
                f5 = Frat5(f5_data.name)
                for _dcp, val in f5_data.curve.items():
                    f5.add_vals(val)
                if carrier_config.fare_adjustment_scale is not None:
                    f5.fare_adjustment_scale = carrier_config.fare_adjustment_scale
                carrier.frat5 = f5
            if carrier_config.load_factor_curve is not None and carrier_config.load_factor_curve != "":
                lfc = self.load_factor_curves[carrier_config.load_factor_curve]
                carrier.load_factor_curve = lfc

            # Frat5 curve by market - experimental code !!!
            for k, name in carrier_config.frat5_map.items():
                a = k.split("-")  # orig-dest
                f5 = self.frat5curves[name]
                try:
                    carrier.add_frat5_mkt(a[0], a[1], f5)
                except Exception as e:
                    print(e)
                    print("values =", a[0], a[1], f5)
            for anc_code, anc_price in carrier_config.ancillaries.items():
                anc = Ancillary(anc_code, anc_price, 0)
                carrier.add_ancillary(anc)

            self.eng.add_carrier(carrier)

        self.classes = config.classes
        self.init_rm = {}  # TODO

    def _init_airports(self, config: Config):
        """
        Initialize airports and their geographic information.

        Parameters
        ----------
        config : Config
            Configuration object containing airport/place definitions
            with coordinates and minimum connection times.

        Notes
        -----
        This method creates Airport objects with geographic coordinates
        used for distance calculations and minimum connection time (MCT)
        data for hub operations.
        """
        logger.info("Initializing airports")
        # Load the places into Airport objects.  We use lat/lon to get
        # great circle distance, and this also has the MCT data
        for code, p in config.places.items():
            assert isinstance(p, passengersim.config.Place)
            a = Airport(code, p.label)
            if p.lat is not None:
                a.latitude = p.lat
            if p.lon is not None:
                a.longitude = p.lon
            if p.country is not None:
                a.country = p.country
            if p.state is not None:
                a.state = p.state
            if p.mct is not None:
                assert isinstance(p.mct, passengersim.config.MinConnectTime)
                a.mct_dd = p.mct.domestic_domestic
                a.mct_di = p.mct.domestic_international
                a.mct_id = p.mct.international_domestic
                a.mct_ii = p.mct.international_international
            self.airports[code] = a
            self.eng.add_airport(a)

    def _init_booking_curves(self, config):
        logger.info("Initializing booking curves")
        self.curves = {}
        for curve_name, curve_config in config.booking_curves.items():
            bc = passengersim.core.BookingCurve(curve_name)
            bc.random_generator = self.random_generator
            # ensure that the curve is sorted in descending order by days prior
            sorted_days_prior = reversed(sorted(curve_config.curve.keys()))
            for days_prior in sorted_days_prior:
                pct = curve_config.curve[days_prior]
                bc.add_dcp(days_prior, pct)
            self.curves[curve_name] = bc

    def _init_demands(self, config):
        logger.info("Initializing demands")
        markets = {}
        market_multipliers = {}
        for mkt_config in config.markets:
            market_multipliers[f"{mkt_config.orig}~{mkt_config.dest}"] = mkt_config.demand_multiplier
        # This simulates PODS' favored carrier logic.  The CALP values are
        # all set to 1.0 in all their networks, so hard-coded for now but
        # we can load from YAML in the future if we need to
        if len(config.carriers) > 0:
            prob = 1.0 / len(config.carriers)
            calp = {cxr_name: prob for cxr_name in config.carriers.keys()}
        else:
            calp = {}

        for dmd_config in config.demands:
            mkt_ident = f"{dmd_config.orig}~{dmd_config.dest}"
            if mkt_ident not in markets:
                mkt = passengersim.core.Market(dmd_config.orig, dmd_config.dest)
                markets[mkt_ident] = mkt
            else:
                mkt = markets[mkt_ident]
            dmd = passengersim.core.Demand(
                segment=dmd_config.segment, market=mkt, deterministic=dmd_config.deterministic
            )
            dmd.base_demand = dmd_config.base_demand * self.demand_multiplier * market_multipliers.get(mkt_ident, 1.0)
            dmd.price = dmd_config.reference_fare
            dmd.reference_fare = dmd_config.reference_fare
            if dmd_config.distance > 0.01:
                dmd.distance = dmd_config.distance
            elif dmd.orig in self.airports and dmd.dest in self.airports:
                dmd.distance = get_mileage(self.airports, dmd.orig, dmd.dest)

            # Get the choice model name to use for this demand.
            model_name = dmd_config.choice_model or dmd_config.segment
            cm = self.choice_models.get(model_name, None)
            if cm is not None:
                dmd.add_choice_model(cm)
            else:
                raise ValueError(f"Choice model {model_name} not found for demand {dmd}")
            if dmd_config.curve:
                curve_name = str(dmd_config.curve).strip()
                curve = self.curves[curve_name]
                dmd.add_curve(curve)
            if dmd_config.todd_curve in self.todd_curves:
                dmd.add_dwm(self.todd_curves[dmd_config.todd_curve])
            if dmd_config.group_sizes is not None:
                dmd.add_group_sizes(dmd_config.group_sizes)
            dmd.prob_saturday_night = dmd_config.prob_saturday_night
            dmd.prob_num_days = dmd_config.prob_num_days
            dmd.prob_favored_carrier = calp

            for o in dmd_config.overrides:
                dmd.add_override(o.carrier, o.discount_pct, o.pref_adj)

            if dmd_config.dwm_tolerance > 0.0:
                dmd.dwm_tolerance = dmd_config.dwm_tolerance
            elif len(self.config.dwm_tolerance) > 0:
                for tolerance in self.config.dwm_tolerance:
                    if tolerance["min_dist"] <= dmd.distance <= tolerance["max_dist"]:
                        if dmd.segment in tolerance:
                            dmd.dwm_tolerance = tolerance[dmd.segment]
                        else:
                            raise Exception(f"DWM tolerance data is missing segment '{dmd.segment}'")

            self.eng.add_demand(dmd)
            if self.debug:
                print(f"Added demand: {dmd}, base_demand = {dmd.base_demand}")
        # Hold PyObjects for markets in a dictionary in order to avoid duplicates
        self._markets = {k: v for k, v in self.markets.items()}

    def _init_fares(self, config: Config):
        logger.info("Initializing fares")
        # self.fares = []
        disable_ap = config.simulation_controls.disable_ap

        discovered_restrictions = set()

        for fare_config in config.fares:
            fare = passengersim.core.Fare(
                self.carriers_dict[fare_config.carrier],
                fare_config.orig,
                fare_config.dest,
                fare_config.booking_class,
                fare_config.price,
            )
            fare.cabin = fare_config.cabin
            fare.min_stay = fare_config.min_stay
            fare.saturday_night_required = fare_config.saturday_night_required
            if not disable_ap:
                fare.adv_purch = fare_config.advance_purchase
            for rest_code in fare_config.restrictions:
                rest_num = self._get_fare_restriction_num(rest_code, ignore_when_missing=True)
                if rest_num:
                    fare.add_restriction(rest_num)
                    discovered_restrictions.add(str(rest_code).casefold())
                else:
                    if config.simulation_controls.allow_unused_restrictions:
                        warnings.warn(
                            f"Restriction {rest_code!r} found in fares but not used in any choice model",
                            skip_file_prefixes=_warn_skips,
                            stacklevel=1,
                        )
                    else:
                        raise ValueError(f"Restriction {rest_code!r} found in fares but not used in any choice model")
            self.eng.add_fare(fare)
            if self.debug:
                print(f"Added fare: {fare}")
            # self.fares.append(fare)

        # check that all restrictions used in choice models are present in fares
        for r in self._fare_restriction_list:
            if r not in discovered_restrictions:
                if config.simulation_controls.allow_unused_restrictions:
                    warnings.warn(
                        f"Restriction {r!r} used in choice models but not found in fares",
                        skip_file_prefixes=_warn_skips,
                        stacklevel=1,
                    )
                else:
                    raise ValueError(f"Restriction {r!r} used in choice models but not found in fares")

        carriers = {cxr.name: cxr for cxr in self.eng.carriers}
        for path_config in config.paths:
            p = passengersim.core.Path(path_config.orig, path_config.dest, 0.0)
            p.path_quality_index = path_config.path_quality_index
            leg_index1 = path_config.legs[0]
            tmp_leg = self.legs[leg_index1]
            assert tmp_leg.orig == path_config.orig, "Path statement is corrupted, orig doesn't match"
            assert tmp_leg.flt_no == leg_index1
            p.add_leg(tmp_leg)
            if len(path_config.legs) >= 2:
                leg_index2 = path_config.legs[1]
                if leg_index2 > 0:
                    tmp_leg = self.legs[leg_index2]
                    p.add_leg(self.legs[leg_index2])
            assert tmp_leg.dest == path_config.dest, "Path statement is corrupted, dest doesn't match"
            path_carrier_name = tmp_leg.carrier_name
            if path_carrier_name not in carriers:
                raise ValueError(f"Carrier {path_carrier_name} not found")
            p.add_carrier(carriers[path_carrier_name])
            self.eng.add_path(p)

        # Go through and make sure things are linked correctly
        fares_dict = defaultdict(list)
        lowest_fare_dict = defaultdict(lambda: 9e9)
        highest_fare_dict = defaultdict(float)
        for f in self.eng.fares:
            od_key = (f.orig, f.dest)
            fares_dict[od_key].append(f)
            lowest_fare_dict[od_key] = min(lowest_fare_dict[od_key], f.price)
            highest_fare_dict[od_key] = max(highest_fare_dict[od_key], f.price)
        for dmd in self.eng.demands:
            tmp_fares = fares_dict[(dmd.orig, dmd.dest)]
            tmp_fares = sorted(tmp_fares, reverse=True, key=lambda p: p.price)
            for fare in tmp_fares:
                dmd.add_fare(fare)

            # Now set upper and lower bounds, these are used in continuous pricing
            # CP can never go lower than the lowest published fare
            lowest_published = lowest_fare_dict[(dmd.orig, dmd.dest)]
            highest_published = highest_fare_dict[(dmd.orig, dmd.dest)]
            for cxr in self.eng.carriers:
                cp_bounds = self.config.carriers[cxr.name].cp_bounds
                prev_fare = None
                for fare in tmp_fares:
                    if fare.carrier_name != cxr.name:
                        continue
                    if prev_fare is not None:
                        diff = prev_fare.price - fare.price
                        prev_fare.price_lower_bound = max(prev_fare.price - diff * cp_bounds, lowest_published)
                        fare.price_upper_bound = min(fare.price + diff * cp_bounds, highest_published)
                        # This provides a price floor, but will be overwritten
                        # each time through the loop EXCEPT for the lowest fare
                        fare.price_lower_bound = max(fare.price - diff * cp_bounds, lowest_published)
                    else:
                        ub = highest_published * (1.0 + self.config.carriers[cxr.name].cp_upper_bound)
                        fare.price_upper_bound = min(fare.price, ub)
                    prev_fare = fare

        logger.info("Initializing bucket decision fares")
        for leg in self.eng.legs:
            try:
                leg_market = self.eng.markets[f"{leg.orig}~{leg.dest}"]
            except KeyError:
                # no market for this leg, so no fares, that's ok
                continue
            assert len(leg_market.fares) > 0, f"No fares found for market {leg_market}"
            for fare in leg_market.fares:
                if fare.carrier_name == leg.carrier_name:
                    leg.set_bucket_blank_value(fare.booking_class, fare.price)

        self.eng.base_time = config.simulation_controls.reference_epoch()

    def _initialize_leg_cabin_bucket(self, config: Config):
        logger.info("Initializing legs, cabins, and buckets")
        self.legs = {}
        carriers = {}
        for carrier in self.eng.carriers:
            carriers[carrier.name] = carrier
        next_leg_id = 1
        for leg_config in config.legs:
            # if no leg_id is provided, we'll use the fltno if it's not already in use
            if (
                leg_config.leg_id is None
                and leg_config.fltno is not None
                and not self.eng.leg_id_exists(leg_config.fltno)
            ):
                leg_config.leg_id = leg_config.fltno
            # if still no leg_id, we'll use the next available
            if leg_config.leg_id is None:
                while self.eng.leg_id_exists(next_leg_id):
                    next_leg_id += 1
                leg_config.leg_id = next_leg_id
            leg = passengersim.core.Leg(
                leg_config.leg_id,
                carriers[leg_config.carrier],
                leg_config.fltno,
                leg_config.orig,
                leg_config.dest,
            )
            leg.dep_time = leg_config.dep_time
            leg.arr_time = leg_config.arr_time
            leg.dep_time_offset = leg_config.dep_time_offset
            leg.arr_time_offset = leg_config.arr_time_offset
            if leg_config.distance:
                leg.distance = leg_config.distance
            elif len(self.airports) > 0:
                leg.distance = get_mileage(self.airports, leg.orig, leg.dest)
            self.eng.add_leg(leg)

            # Now we do the cabins and buckets
            if isinstance(leg_config.capacity, int):
                cap = int(leg_config.capacity * self.capacity_multiplier)
                leg.capacity = cap
                cabin = passengersim.core.Cabin("Y", cap)
                leg.add_cabin(cabin)
                self.set_classes(leg, cabin)
            else:
                tot_cap = 0
                for cabin_code, tmp_cap in leg_config.capacity.items():
                    cap = int(tmp_cap * self.capacity_multiplier)
                    tot_cap += cap
                    cabin = passengersim.core.Cabin(cabin_code, cap)
                    leg.add_cabin(cabin)
                leg.capacity = tot_cap
                self.set_classes(leg, cabin)
            if self.debug:
                print(f"Added leg: {leg}, dist = {leg.distance}")
            self.legs[leg.leg_id] = leg

    def set_classes(self, leg: passengersim.core.Leg, _cabin, debug=False):
        leg_classes = self.config.carriers[leg.carrier.name].classes
        cabin_code_list = [c.name for c in leg.cabins]
        if len(leg_classes) == 0:
            return
        cap = float(leg.capacity)
        if debug:
            print(leg, "Capacity = ", cap)
        history_def = leg.carrier.get_history_def()
        for bkg_class in leg_classes:
            # Input as a percentage
            auth = int(cap * self.init_rm.get(bkg_class, 100.0) / 100.0)
            if isinstance(bkg_class, tuple):
                # We are likely using multi-cabin, so unpack it
                (bkg_class, cabin_code) = bkg_class
            else:
                cabin_code = bkg_class[0]
            if cabin_code not in cabin_code_list:
                continue
            b = passengersim.core.Bucket(bkg_class, alloc=auth, history=history_def)
            b.cabin = cabin_code
            leg.add_bucket(b)
            if debug:
                print("    Added Bucket", leg, bkg_class, auth)

    def setup_scenario(self) -> None:
        """
        Set up the scenario for the simulation.

        This will delete any existing data in the database under the same simulation
        name, build the connections if needed, and then call the vn_initial_mapping
        method to set up the initial mapping for the carriers using virtual nesting.
        """
        self.cnx.delete_experiment(self.eng.name)
        logger.debug("building connections")
        num_paths = self.eng.build_connections()
        self.eng.compute_hhi()
        if num_paths and self.cnx.is_open:
            database.tables.create_table_path_defs(self.cnx._connection, self.eng.paths)
        logger.debug(f"Connections done, num_paths = {num_paths}")
        self.eng.initialize_bucket_ap_rules()

        # start with default number of timeframes
        num_timeframes_default = len(self.config.dcps)
        if len(self.config.dcps) and self.config.dcps[-1] == 0:
            num_timeframes_default -= 1

        # initialize pathclasses for each carrier, using settings from the carrier
        # to size the history buffers
        # Also, Q-demand can be forecasted by pathclass even in the absence of bookings
        for carrier in self.eng.carriers:
            self.eng.initialize_pathclasses(carrier.get_history_def(), carrier.name)
            try:
                self.vn_initial_mapping(carrier.name)
            except Exception as e:
                print(e)

        # TODO: only initialize nonstop linkage when needed?
        self.eng.initialize_nonstop_path_linkage()

        # Compute a sampling probability to get approximately the number of
        # choice sets requested
        if self.choice_set_file is not None and self.choice_set_obs > 0:
            tot_dmd = 0
            for d in self.config.demands:
                if len(self.choice_set_mkts) == 0 or (d.orig, d.dest) in self.choice_set_mkts:
                    tot_dmd += d.base_demand
            usable_samples = self.eng.num_trials * (self.eng.num_samples - self.eng.burn_samples)
            total_choice_sets = tot_dmd * usable_samples
            prob = self.choice_set_obs / total_choice_sets if total_choice_sets > 0 else 0
            self.eng.choice_set_sampling_probability = prob
            self.eng.choice_set_mkts = self.choice_set_mkts

    def vn_initial_mapping(self, carrier_code):
        """
        Set up initial virtual nesting mapping for a carrier.

        Parameters
        ----------
        carrier_code : str
            The carrier code to set up virtual nesting mapping for.

        Notes
        -----
        This method assigns index values to path classes for carriers
        using virtual nesting, which allows revenue management systems
        to map between physical and virtual booking classes.
        """
        for path in self.eng.paths:
            if path.get_leg_carrier(0) == carrier_code:
                for i, pc in enumerate(path.pathclasses):
                    pc.set_index(0, i)

    def begin_sample(self, sample: int | None = None):
        """
        Begin processing a new sample in the simulation.

        Parameters
        ----------
        sample : int or None, optional
            The sample number to set. If None, the current sample number
            will be incremented by 1.

        Notes
        -----
        This method handles sample initialization including setting the
        random seed (if configured) and preparing the simulation state
        for the new sample.
        """
        if sample is None:
            # when sample is None, we simply increment the current sample number
            self.eng.sample += 1
        else:
            # otherwise, we set the sample number to the given value
            self.eng.sample = sample
        if self.eng.config.simulation_controls.random_seed is not None:
            self.reseed(
                [
                    self.eng.config.simulation_controls.random_seed,
                    self.eng.trial,
                    self.eng.sample,
                ]
            )
        self.eng.reset_counters()
        self.generate_demands()

    def end_sample(self):
        """
        End processing of the current sample.

        Notes
        -----
        This method records departure statistics to carrier-level counters,
        handles choice set and competitor data capture if configured,
        and performs other end-of-sample cleanup and data collection tasks.
        """

        # Record the departure statistics to carrier-level counters in the simulation
        self.eng.record_departure_statistics()

        # Roll histories to next sample
        self.eng.next_departure()

        # Commit data to the database
        if self.cnx:
            try:
                self.cnx.commit()
            except AttributeError:
                pass

        # Are we capturing choice-set data?
        if self.choice_set_file is not None:
            if self.eng.sample > self.eng.burn_samples:
                cs = self.eng.get_choice_set()
                for line in cs:
                    tmp = [str(z) for z in line]
                    tmp2 = ",".join(tmp)
                    print(tmp2, file=self.choice_set_file)
            self.eng.clear_choice_set()

        # Market share computation (MIDT-lite), might move to C++ in a future version
        alpha = 0.15
        for m in self.eng.markets.values():
            sold = float(m.sold)
            for a in self.eng.carriers:
                carrier_sold = m.get_carrier_sold(a.name)
                share = carrier_sold / sold if sold > 0 else 0
                if self.eng.sample > 1:
                    try:
                        old_share = m.get_carrier_share(a.name)
                    except KeyError:
                        old_share = 0.0
                    new_share = alpha * share + (1.0 - alpha) * old_share
                    m.set_carrier_share(a.name, new_share)
                else:
                    m.set_carrier_share(a.name, share)

    def begin_trial(self, trial: int):
        """Beginning of trial processing.

        Parameters
        ----------
        trial : int
            The trial number.
        """
        self.eng.trial = trial
        logger.info("beginning trial %d", trial)
        self.eng.reset_trial_counters()

        for carrier in self.eng.carriers:
            # Initialize the histories all the various things that need them.
            # This is by-carrier, as the carriers may eventually have different
            # data requirements (sizes) for their history arrays.
            self.eng.initialize_histories(
                carrier,
                num_departures=26,  # TODO make this a parameter
                num_timeframes=len(self.dcp_list) - 1,
                truncation_rule=carrier.truncation_rule,
                store_priceable=bool(carrier.frat5),
                floating_closures=False,
                wipe_existing=True,
            )

    def end_trial(self):
        """End of trial processing."""
        self.extract_segmentation_by_timeframe()
        self.extract_and_reset_bid_price_traces()
        if self.cnx.is_open:
            self.db_writer.final_write_to_sqlite(self.cnx._connection)
            # self.cnx.save_final(self.sim)

    def extract_and_reset_bid_price_traces(self):
        self.bid_price_traces[self.eng.trial] = {
            carrier.name: carrier.raw_bid_price_trace() for carrier in self.eng.carriers
        }
        self.displacement_traces[self.eng.trial] = {
            carrier.name: carrier.raw_displacement_cost_trace() for carrier in self.eng.carriers
        }
        for carrier in self.eng.carriers:
            carrier.reset_bid_price_trace()
            carrier.reset_displacement_cost_trace()

    def extract_segmentation_by_timeframe(
        self,
    ):
        # this should be run, if desired, at the end of each trial
        num_samples = self.eng.num_samples - self.eng.burn_samples
        top_level = {}
        for k in ("bookings", "revenue"):
            data = {}
            for carrier in self.eng.carriers:
                carrier_data = {}
                for segment, values in getattr(carrier, f"raw_{k}_by_segment_fare_dcp")().items():
                    carrier_data[segment] = (
                        pd.DataFrame.from_dict(values, "columns")
                        .rename_axis(index="days_prior", columns="booking_class")
                        .stack()
                    )
                if carrier_data:
                    data[carrier.name] = pd.concat(carrier_data, axis=1, names=["segment"]).fillna(0) / num_samples
            # add non-bookings to the data dict
            if k == "bookings":
                non_bookings = pd.DataFrame.from_dict(self.eng.nonbookings_by_segment_dcp(), "columns").rename_axis(
                    index="days_prior", columns="segment"
                )
                non_bookings["booking_class"] = "XX"
                data["NONE"] = non_bookings.reset_index().set_index(["days_prior", "booking_class"]) / num_samples
            if len(data) == 0:
                return None
            top_level[k] = pd.concat(data, axis=0, names=["carrier"])
        df = pd.concat(top_level, axis=1, names=["metric"])
        self.segmentation_data_by_timeframe[self.eng.trial] = df
        return df

    @contextlib.contextmanager
    def run_single_sample(self) -> int:
        """Context manager to run the next sample in the current trial.

        On entry, the sample number is run through to departure, so all
        sales have happened, but per-sample wrap up (e.g. rolling history
        forward, resetting counters) is deferred until exit.  This is useful
        for running a single sample in a testing framework.

        Yields
        ------
        int
            The sample number just completed.
        """
        if self.eng.trial < 0:
            warnings.warn(
                "Trial must be started before running a sample, implicitly starting Trial 0",
                skip_file_prefixes=_warn_skips,
                stacklevel=1,
            )
            self.begin_trial(0)
        self.begin_sample()
        while True:
            event = self.eng.go()
            self.run_carrier_models(event)
            if event is None or str(event) == "Done" or (event[0] == "Done"):
                assert self.eng.num_events() == 0, f"Event queue still has {self.eng.num_events()} events"
                break
        yield self.eng.sample
        self.end_sample()

    def _run_single_trial(
        self,
        trial: int,
        n_samples_done: int = 0,
        n_samples_total: int = 0,
        progress: ProgressBar | None = None,
        update_freq: int | None = None,
    ):
        """Run a single trial of the simulation."""
        memory_log(f"begin _run_single_trial {trial}")
        if not n_samples_total:
            n_samples_total = self.eng.num_trials * self.eng.num_samples

        self.begin_trial(trial)
        logger.info("running %d samples in trial %d", self.eng.num_samples, trial)
        for sample in range(self.eng.num_samples):
            sample_start_time = time.time()
            if self.eng.config.simulation_controls.double_capacity_until:
                # Just trying this, PODS has something similar during burn phase
                if sample == 0:
                    for leg in self.eng.legs:
                        leg.capacity = leg.capacity * 2
                elif sample == self.eng.config.simulation_controls.double_capacity_until:
                    for leg in self.eng.legs:
                        leg.capacity = int(leg.capacity / 2)

            self.begin_sample(sample)
            if update_freq is not None and self.eng.sample % update_freq == 0:
                total_rev, n = 0.0, 0
                carrier_info = ""
                for cxr in self.eng.carriers:
                    total_rev += cxr.revenue
                    n += 1
                    carrier_info += f"{', ' if n > 0 else ''}{cxr.name}=${cxr.revenue:8.0f}"
                dmd_b, dmd_l = 0, 0
                for dmd in self.eng.demands:
                    if dmd.business:
                        dmd_b += dmd.scenario_demand
                    else:
                        dmd_l += dmd.scenario_demand
                d_info = f", {int(dmd_b)}, {int(dmd_l)}"
                logger.info(f"Trial={self.eng.trial}, Sample={self.eng.sample}{carrier_info}{d_info}")

            # Loop on passengers
            while True:
                event = self.eng.go()
                memory_log(f"pre-run_carrier_models {event}")
                self.run_carrier_models(event)
                memory_log(f"post-run_carrier_models {event}")
                if event is None or str(event) == "Done" or (event[0] == "Done"):
                    assert self.eng.num_events() == 0, f"Event queue still has {self.eng.num_events()} events"
                    break

            n_samples_done += 1
            self.sample_done_callback(n_samples_done, n_samples_total)
            self.end_sample()
            if progress is not None:
                progress.tick(refresh=(sample == 0))
            t = time.time() - sample_start_time
            logger.info("completed sample %i in %.2f secs", sample, t)

        self.eng.num_trials_completed += 1
        self.end_trial()

    def _run_sim(self, rich_progress: ProgressBar | None = None):
        update_freq = self.update_frequency
        logger.debug(f"run_sim, num_trials = {self.eng.num_trials}, num_samples = {self.eng.num_samples}")
        self.db_writer.update_db_write_flags()
        n_samples_total = self.eng.num_trials * self.eng.num_samples
        n_samples_done = 0
        self.sample_done_callback(n_samples_done, n_samples_total)
        if rich_progress is None:
            if self.eng.config.simulation_controls.show_progress_bar:
                progress = ProgressBar(total=n_samples_total)
            else:
                progress = DummyProgressBar()
        elif isinstance(rich_progress, Progress):
            if self.eng.config.simulation_controls.show_progress_bar:
                # if an external Progress object is provided, generate a
                # ProgressBar object from it
                progress = ProgressBar(total=n_samples_total, external_progress=rich_progress)
            else:
                progress = DummyProgressBar()
        else:
            raise TypeError("rich_progress must be a Progress object")
        with progress:
            for trial in range(self.eng.num_trials):
                self._run_single_trial(
                    trial,
                    n_samples_done,
                    n_samples_total,
                    progress,
                    update_freq,
                )

    def _run_sim_single_trial(self, trial: int, *, rich_progress: Progress | None = None):
        update_freq = self.update_frequency
        self.db_writer.update_db_write_flags()
        n_samples_total = self.eng.num_samples
        n_samples_done = 0
        self.sample_done_callback(n_samples_done, n_samples_total)
        if rich_progress is None:
            progress = DummyProgressBar()
        elif isinstance(rich_progress, Progress):
            progress = ProgressBar(total=n_samples_total, external_progress=rich_progress)
        else:
            raise TypeError("rich_progress must be a Progress object")
        with progress:
            self._run_single_trial(
                trial,
                n_samples_done,
                n_samples_total,
                progress,
                update_freq,
            )

    def run_carrier_models(self, info: Any = None, departed: bool = False, debug=False):
        """
        Run carrier revenue management models in response to events.

        Parameters
        ----------
        info : Any, optional
            Event information including event type and associated data.
        departed : bool, default False
            Whether this is a departure event.
        debug : bool, default False
            Whether to enable debug output.

        Notes
        -----
        This method processes various event types including callbacks,
        DCP events, passenger arrivals, and departures. It coordinates
        the execution of revenue management processes for all carriers.
        """
        what_had_happened_was = []
        try:
            event_type = info[0]

            if event_type.startswith("callback_"):
                # This is a callback function, not a string event type
                # so, call it with the remaining arguments
                callback_t = event_type[9:]
                callback_f = info[1]
                result = callback_f(self, *info[2:])
                if isinstance(result, dict):
                    self.callback_data.update_data(callback_t, self.eng.trial, self.eng.sample, *info[2:], **result)
                return

            recording_day = info[1]  # could in theory be non-integer for fractional days
            dcp_index = info[2]
            if dcp_index == -1:
                dcp_index = len(self.dcp_list) - 1

            if event_type.lower() in {"dcp", "done"}:
                self.eng.last_dcp = recording_day
                self.eng.last_dcp_index = dcp_index
                # self.capture_dcp_data(dcp_index)
                # self.capture_competitor_data()  # Simulates Infare / QL2

            # Run the specified process(es) for the carriers
            for carrier in self.eng.carriers:
                if isinstance(carrier.rm_system, RmSys):
                    continue
                if carrier.rm_system is None:
                    continue
                if event_type.lower() == "dcp":
                    # Regular Data Collection Points (pre-departure)
                    what_had_happened_was.append(f"run {carrier.name} DCP")
                    carrier.rm_system.run(
                        self.eng,
                        carrier.name,
                        dcp_index,
                        recording_day,
                        event_type="dcp",
                    )
                elif event_type.lower() == "daily":
                    # Daily report, every day prior to departure EXCEPT specified DCPs
                    what_had_happened_was.append(f"run {carrier.name} daily")
                    carrier.rm_system.run(
                        self.eng,
                        carrier.name,
                        dcp_index,
                        recording_day,
                        event_type="daily",
                    )
                elif event_type.lower() == "done":
                    # Post departure processing
                    what_had_happened_was.append(f"run {carrier.name} done")
                    carrier.rm_system.run(
                        self.eng,
                        carrier.name,
                        dcp_index,
                        recording_day,
                        event_type="dcp",
                    )
                    carrier.rm_system.run(
                        self.eng,
                        carrier.name,
                        dcp_index,
                        recording_day,
                        event_type="departure",
                    )
                    if self.eng.sample % 7 == 0:
                        # Can be used less frequently,
                        # such as ML steps on accumulated data
                        carrier.rm_system.run(
                            self.eng,
                            carrier.name,
                            dcp_index,
                            recording_day,
                            event_type="weekly",
                        )

            # Internal simulation data capture that is normally done by RM systems
            if event_type.lower() in {"dcp", "done"}:
                self.eng.last_dcp = recording_day
                self.eng.last_dcp_index = dcp_index
                self.capture_dcp_data(dcp_index)
                what_had_happened_was.append("capture_dcp_close_data")
                if self.eng.config.simulation_controls.capture_competitor_data:
                    self.capture_competitor_data()  # Simulates Infare / QL2

            # Database capture
            if event_type.lower() == "daily":
                if self.cnx.is_open and self.eng.save_timeframe_details and recording_day > 0:
                    # if self.sim.sample == 101:
                    #     print("write_to_sqlite DAILY")
                    what_had_happened_was.append("write_to_sqlite daily")
                    _internal_log = self.db_writer.write_to_sqlite(
                        self.cnx._connection,
                        recording_day,
                        store_bid_prices=self.eng.config.db.store_leg_bid_prices,
                        intermediate_day=True,
                        store_displacements=self.eng.config.db.store_displacements,
                    )
            elif event_type.lower() in {"dcp", "done"}:
                if event_type.lower() == "done" and "forecast_accuracy" in self.config.outputs.reports:
                    self.eng.capture_forecast_accuracy()
                if self.cnx.is_open:
                    self.cnx.save_details(self.db_writer, self.eng, recording_day)
                if self.file_writer is not None:
                    self.file_writer.save_details(self.eng, recording_day)

            # simulation statistics record
            if event_type.lower() in {"dcp", "done"}:
                self.eng.record_dcp_statistics(recording_day)
            self.eng.record_daily_statistics(recording_day)

        except Exception:
            # print(e)
            # print("Error in run_carrier_models")
            # print(f"{info=}")
            # print("what_had_happened_was=", what_had_happened_was)
            raise

    def capture_competitor_data(self):
        """
        Capture competitor pricing data for all markets.

        Notes
        -----
        This method shops for the lowest prices in each market and
        stores competitor pricing information that can be used by
        revenue management systems for competitive analysis.
        """
        for mkt in self.eng.markets.values():
            lowest = self.eng.shop(mkt.orig, mkt.dest)
            for cxr, price in lowest:
                mkt.set_competitor_price(cxr, price)

    def capture_dcp_data(self, dcp_index, closures_only=False):
        """
        Capture data control point (DCP) data for revenue management.

        Parameters
        ----------
        dcp_index : int
            The index of the data control point.
        closures_only : bool, default False
            Whether to capture only closure data or all DCP data.

        Notes
        -----
        This method captures seat availability, booking data, and other
        metrics at specific time points (DCPs) before departure, which
        is essential for revenue management decision making.
        """
        for leg in self.eng.legs:
            leg.capture_dcp(dcp_index)
        for path in self.eng.paths:
            path.capture_dcp(dcp_index, closures_only=closures_only)
        for carrier in self.eng.carriers:
            if dcp_index > 0:
                carrier.current_tf_index += 1

    def _accum_by_tf(self, dcp_index):
        # This is now replaced by C++ native counters ...
        if dcp_index > 0:
            prev_dcp = self.dcp_list[dcp_index - 1]
            for f in self.eng.fares:
                curr_business = self.fare_sales_by_dcp.get(("business", prev_dcp), 0)
                curr_leisure = self.fare_sales_by_dcp.get(("leisure", prev_dcp), 0)
                inc_leisure = curr_leisure + (f.sold - f.sold_business)
                inc_business = curr_business + f.sold_business
                self.fare_sales_by_dcp[("business", prev_dcp)] = inc_business
                self.fare_sales_by_dcp[("leisure", prev_dcp)] = inc_leisure

                key2 = (f.carrier_name, prev_dcp)
                curr_carrier = self.fare_sales_by_carrier_dcp[key2]
                self.fare_sales_by_carrier_dcp[key2] = curr_carrier + f.sold

                key3 = (f.carrier_name, f.booking_class, prev_dcp)
                self.fare_details_sold[key3] += f.sold
                self.fare_details_sold_business[key3] += f.sold_business
                self.fare_details_revenue[key3] += f.price * f.sold

    def generate_dcp_rm_events(self, debug=False):
        """Pushes an event per reading day (DCP) onto the queue.
        Also adds events for daily reoptimzation"""
        dcp_hour = self.eng.config.simulation_controls.dcp_hour
        if debug:
            tmp = datetime.fromtimestamp(self.eng.base_time, tz=UTC)
            print(f"Base Time is {tmp.strftime('%Y-%m-%d %H:%M:%S %Z')}")
        for dcp_index, dcp in enumerate(self.dcp_list):
            if dcp == 0:
                continue
            event_time = int(self.eng.base_time - dcp * 86400 + 3600 * dcp_hour)
            if debug:
                tmp = datetime.fromtimestamp(event_time, tz=UTC)
                print(f"Added DCP {dcp} at {tmp.strftime('%Y-%m-%d %H:%M:%S %Z')}")
            info = ("DCP", dcp, dcp_index)
            rm_event = Event(info, event_time)
            self.eng.add_event(rm_event)

        # Now add the events for daily reoptimization
        max_days_prior = max(self.dcp_list)
        dcp_idx = 0
        for days_prior in reversed(range(max_days_prior)):
            if days_prior not in self.dcp_list:
                info = ("daily", days_prior, dcp_idx)
                event_time = int(self.eng.base_time - days_prior * 86400 + 3600 * dcp_hour)
                rm_event = Event(info, event_time)
                self.eng.add_event(rm_event)
            else:
                dcp_idx += 1

        # add events for begin and end sample callbacks
        self.add_callback_events()

    def generate_demands(self, system_rn=None, debug=False):
        """
        Generate demands following the procedure used in PODS.

        Parameters
        ----------
        system_rn : float or None, optional
            System random number. If None, a new random number will be
            generated using the simulation's random generator.
        debug : bool, default False
            Whether to enable debug output during demand generation.
        """
        self.generate_dcp_rm_events()
        total_events = 0
        system_rn = self.random_generator.get_normal() if system_rn is None else system_rn

        # We don't have an O&D object, but we use this to get a market random number
        # per market
        mrn_ref = {}

        # Need to have leisure / business split for PODS
        trn_ref = {
            "business": self.random_generator.get_normal(),
            "leisure": self.random_generator.get_normal(),
        }

        # this stores a random number per segment
        srn_ref = {}
        segment_k_factor = self.eng.config.simulation_controls.segment_k_factor

        def get_or_make_random(grouping, key):
            if key not in grouping:
                grouping[key] = self.random_generator.get_normal()
            return grouping[key]

        end_time = self.base_time

        for dmd in self.eng.demands:
            base = dmd.base_demand

            if dmd.deterministic:
                # Deterministic demand, no randomness
                dmd.scenario_demand = base
            else:
                # Get the random numbers we're going to use to perturb demand
                trn = get_or_make_random(trn_ref, (dmd.orig, dmd.dest, dmd.segment))
                mrn = get_or_make_random(mrn_ref, (dmd.orig, dmd.dest))
                if segment_k_factor:
                    srn = get_or_make_random(srn_ref, dmd.segment)
                else:
                    srn = 0
                if self.eng.config.simulation_controls.simple_cv100 > 0.0:
                    sigma = self.eng.config.simulation_controls.simple_cv100 * sqrt(base) * 10.0
                    urn = self.random_generator.get_normal() * sigma
                elif self.eng.config.simulation_controls.simple_k_factor:
                    urn = self.random_generator.get_normal() * self.eng.config.simulation_controls.simple_k_factor
                else:
                    urn = 0

                mu = base * (
                    1.0
                    + system_rn * self.eng.sys_k_factor
                    + mrn * self.eng.mkt_k_factor
                    + trn * self.eng.pax_type_k_factor
                    + srn * segment_k_factor
                    + urn
                )
                mu = max(mu, 0.0)
                sigma = sqrt(mu * self.eng.config.simulation_controls.tot_z_factor)  # Correct?
                n = mu + sigma * self.random_generator.get_normal()
                dmd.scenario_demand = max(n, 0)

                if debug:
                    logger.debug(
                        f"DMD,{self.eng.sample},{dmd.orig},{dmd.dest},"
                        f"{dmd.segment},{dmd.base_demand},"
                        f"{round(mu, 2)},{round(sigma, 2)},{round(n, 2)}"
                    )

            # Now we split it up over timeframes and add it to the simulation
            num_pax = int(dmd.scenario_demand + 0.5)  # rounding
            if self.eng.config.simulation_controls.timeframe_demand_allocation == "pods":
                num_events_by_tf = self.eng.allocate_demand_to_tf_pods(
                    dmd, num_pax, self.eng.tf_k_factor, int(end_time)
                )
            else:
                num_events_by_tf = self.eng.allocate_demand_to_tf(dmd, num_pax, self.eng.tf_k_factor, int(end_time))
            num_events = sum(num_events_by_tf)
            total_events += num_events
            if num_events != round(num_pax):
                raise ValueError(f"Generate demand function, num_pax={num_pax}, num_events={num_events}")

        return total_events

    def generate_demands_gamma(self, system_rn=None, debug=False):
        """Using this as a quick test"""
        self.generate_dcp_rm_events()
        end_time = self.base_time
        cv100 = 0.3
        for dmd in self.eng.demands:
            mu = dmd.base_demand
            std_dev = cv100 * sqrt(mu) * 10.0
            # std_dev = mu * 0.3
            var = std_dev**2
            shape_a = mu**2 / var
            scale_b = var / mu
            loc = 0.0
            r = gamma.rvs(shape_a, loc, scale_b, size=1)
            num_pax = int(r[0] + 0.5)
            dmd.scenario_demand = num_pax
            self.eng.allocate_demand_to_tf_pods(dmd, num_pax, self.eng.tf_k_factor, int(end_time))
        total_events = 0
        return total_events

    def compute_reports(
        self,
        sim: SimulationEngine,
        to_log=True,
        to_db: bool | database.Database = True,
        additional=(
            "fare_class_mix",
            "load_factors",
            # "bookings_by_timeframe",
            "total_demand",
        ),
    ) -> SummaryTables:
        """
        Compute comprehensive simulation reports.

        Parameters
        ----------
        sim : SimulationEngine
            The simulation engine instance to generate reports from.
        to_log : bool, default True
            Whether to log report summaries.
        to_db : bool or database.Database, default True
            Database connection or boolean indicating whether to write
            reports to database.
        additional : tuple, optional
            Additional report types to include. Options include
            'fare_class_mix', 'load_factors', 'total_demand'.

        Returns
        -------
        SummaryTables
            Object containing all computed reports including leg, path,
            carrier, and other summary statistics.

        Raises
        ------
        ValueError
            If no samples have been completed in the simulation.
        """
        num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)
        if num_samples <= 0:
            raise ValueError(
                "insufficient number of samples outside burn period for reporting"
                f"\n- num_trials = {sim.num_trials}"
                f"\n- num_samples = {sim.num_samples}"
                f"\n- burn_samples = {sim.burn_samples}"
            )

        if to_db is True:
            to_db = self.cnx
        class_dist_df = self.compute_class_dist(sim, to_log, to_db)
        dmd_df = self.compute_demand_report(sim, to_log, to_db)
        fare_df = self.compute_fare_report(sim, to_log, to_db)
        leg_df = self.compute_leg_report(sim, to_log, to_db)
        path_df = self.compute_path_report(sim, to_log, to_db)
        path_classes_df = self.compute_path_class_report(sim, to_log, to_db)
        carrier_df = self.compute_carrier_report(sim, to_log, to_db)
        segmentation_df = self.compute_segmentation_by_timeframe()
        raw_load_factor_dist_df = self.compute_raw_load_factor_distribution(sim, to_log, to_db)
        leg_avg_load_factor_dist_df = self.compute_leg_avg_load_factor_distribution(sim, to_log, to_db)
        fare_class_dist_df = self.compute_raw_fare_class_mix(sim, to_log, to_db)
        bid_price_history_df = self.compute_bid_price_history(sim, to_log, to_db)
        displacement_df = self.compute_displacement_history(sim, to_log, to_db)
        demand_to_come_df = self.compute_demand_to_come_summary(sim, to_log, to_db)
        local_fraction_dist_df = self.compute_leg_local_fraction_distribution(sim, to_log, to_db)
        local_fraction_by_place = self.compute_local_fraction_by_place(sim, to_log, to_db)

        summary = SummaryTables(
            name=sim.name,
            class_dist=class_dist_df,
            config=sim.config,
            demands=dmd_df,
            fares=fare_df,
            legs=leg_df,
            paths=path_df,
            path_classes=path_classes_df,
            carriers=carrier_df,
            bid_price_history=bid_price_history_df,
            raw_load_factor_distribution=raw_load_factor_dist_df,
            leg_avg_load_factor_distribution=leg_avg_load_factor_dist_df,
            raw_fare_class_mix=fare_class_dist_df,
            leg_local_fraction_distribution=local_fraction_dist_df,
            local_fraction_by_place=local_fraction_by_place,
            n_total_samples=num_samples,
            segmentation_by_timeframe=segmentation_df,
            displacement_history=displacement_df,
            demand_to_come_summary=demand_to_come_df,
        )
        summary.load_additional_tables(self.cnx, sim.name, sim.burn_samples, additional)
        summary.cnx = self.cnx
        return summary

    def compute_demand_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
        """
        Compute a demand report for the simulation.

        Parameters
        ----------
        sim : SimulationEngine
            The simulation engine instance to generate the report from.
        to_log : bool, default True
            Whether to log the report summary.
        to_db : database.Database or None, optional
            Database connection to write the report to.

        Returns
        -------
        pd.DataFrame
            DataFrame containing demand statistics including origin,
            destination, segment, sold units, revenue, and other metrics.
        """
        dmd_df = []
        for m in sim.demands:
            avg_price = m.revenue / m.sold if m.sold > 0 else 0
            dmd_df.append(
                dict(
                    orig=m.orig,
                    dest=m.dest,
                    segment=m.segment,
                    sold=m.sold,
                    revenue=m.revenue,
                    avg_fare=m.revenue / m.sold if m.sold > 0 else 0,
                    gt_demand=m.gt_demand,
                    gt_sold=m.gt_sold,
                    gt_revenue=m.gt_revenue,
                )
            )
            if to_log:
                logger.info(
                    f"   Dmd: {m.orig}-{m.dest}:{m.segment}"
                    f"  Sold = {m.sold},  "
                    f"Rev = {m.revenue}, "
                    f"AvgFare = {avg_price:.2f}"
                )
        dmd_df = pd.DataFrame(dmd_df)
        if to_db and to_db.is_open:
            to_db.save_dataframe("demand_summary", dmd_df)
        return dmd_df

    def compute_class_dist(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
        # Get unique segments
        segs = set([dmd.segment for dmd in sim.demands])
        dist = defaultdict(int)
        for f in sim.fares:
            for seg in segs:
                k = (f.booking_class, seg)
                try:
                    dist[k] += f.get_sales_by_segment(seg)
                except Exception:
                    # If the segment isn't found, just ignore it.
                    # i.e. basic economy won't book Y0
                    pass

        class_dist_df = []
        for (cls, seg), sold in dist.items():
            class_dist_df.append(dict(booking_class=cls, segment=seg, sold=sold))
        class_dist_df = pd.DataFrame(class_dist_df)
        return class_dist_df

    def compute_fare_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
        fare_df = []
        for f in sim.fares:
            for dcp_index, days_prior in enumerate(self.dcp_list):
                fare_df.append(
                    dict(
                        carrier=f.carrier.name,
                        orig=f.orig,
                        dest=f.dest,
                        booking_class=f.booking_class,
                        dcp_index=dcp_index,
                        price=f.price,
                        sold=f.get_sales_by_dcp2(days_prior),
                        gt_sold=f.gt_sold,
                        avg_adjusted_price=f.get_adjusted_by_dcp(dcp_index),
                    )
                )
                if to_log:
                    logger.info(
                        f"   Fare: {f.carrier} {f.orig}-{f.dest}:{f.booking_class}"
                        # f"AvgAdjFare = {avg_adj_price:.2f},"
                        f"  Sold = {f.sold},  "
                        f"Price = {f.price}"
                    )
        fare_df = pd.DataFrame(fare_df)
        #        if to_db and to_db.is_open:
        #            to_db.save_dataframe("fare_summary", fare_df)
        return fare_df

    def compute_leg_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
        num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)
        leg_df = []
        for leg in sim.legs:
            # Checking consistency while I debug the cabin code
            sum_b1, sum_b2 = 0, 0
            for b in leg.buckets:
                sum_b1 += b.sold
            for c in leg.cabins:
                for b in c.buckets:
                    sum_b2 += b.sold
            if sum_b1 != sum_b2:
                print("Oh, crap!")
            avg_sold = leg.gt_sold / num_samples
            avg_rev = leg.gt_revenue / num_samples
            lf = 100.0 * leg.gt_sold / (leg.capacity * num_samples)
            if to_log:
                logger.info(
                    f"    Leg: {leg.carrier}:{leg.flt_no} {leg.orig}-{leg.dest}: "
                    f" AvgSold = {avg_sold:6.2f},  AvgRev = ${avg_rev:,.2f}, "
                    f"LF = {lf:,.2f}%"
                )
            leg_df.append(
                dict(
                    leg_id=leg.leg_id,
                    carrier=leg.carrier_name,
                    flt_no=leg.flt_no,
                    orig=leg.orig,
                    dest=leg.dest,
                    avg_sold=avg_sold,
                    avg_rev=avg_rev,
                    lf=lf,
                )
            )
        leg_df = pd.DataFrame(leg_df)
        if to_db and to_db.is_open:
            to_db.save_dataframe("leg_summary", leg_df)
        return leg_df

    def compute_path_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
        num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)
        avg_lf, n = 0.0, 0
        for leg in sim.legs:
            lf = 100.0 * leg.gt_sold / (leg.capacity * num_samples)
            avg_lf += lf
            n += 1

        tot_rev = 0.0
        for m in sim.demands:
            tot_rev += m.revenue

        avg_lf = avg_lf / n if n > 0 else 0
        if to_log:
            logger.info(f"    LF:  {avg_lf:6.2f}%, Total revenue = ${tot_rev:,.2f}")

        path_df = []
        for path in sim.paths:
            avg_sold = path.gt_sold / num_samples
            avg_sold_priceable = path.gt_sold_priceable / num_samples
            avg_rev = path.gt_revenue / num_samples
            if to_log:
                logger.info(f"{path}, avg_sold={avg_sold:6.2f}, avg_rev=${avg_rev:10,.2f}")
            data = dict(
                orig=path.orig,
                dest=path.dest,
                carrier1=path.get_leg_carrier(0),
                leg_id1=path.get_leg_id(0),
                carrier2=None,
                leg_id2=None,
                carrier3=None,
                leg_id3=None,
                avg_sold=avg_sold,
                avg_sold_priceable=avg_sold_priceable,
                avg_rev=avg_rev,
            )
            if path.num_legs() == 1:
                path_df.append(data)
            elif path.num_legs() == 2:
                data["carrier2"] = path.get_leg_carrier(1)
                data["leg_id2"] = path.get_leg_id(1)
                path_df.append(data)
            elif path.num_legs() == 3:
                data["carrier2"] = path.get_leg_carrier(1)
                data["leg_id2"] = path.get_leg_id(1)
                data["carrier3"] = path.get_leg_carrier(2)
                data["leg_id3"] = path.get_leg_id(2)
                path_df.append(data)
            else:
                raise NotImplementedError("path with more than 3 legs")
        path_df = pd.DataFrame(path_df)
        if to_db and to_db.is_open:
            to_db.save_dataframe("path_summary", path_df)
        return path_df

    def compute_path_class_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
        num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)

        path_class_df = []
        for path in sim.paths:
            for pc in path.pathclasses:
                avg_sold = pc.gt_sold / num_samples
                avg_sold_priceable = pc.gt_sold_priceable / num_samples
                avg_rev = pc.gt_revenue / num_samples
                if to_log:
                    logger.info(f"{pc}, avg_sold={avg_sold:6.2f}, avg_rev=${avg_rev:10,.2f}")
                data = dict(
                    orig=path.orig,
                    dest=path.dest,
                    carrier1=path.get_leg_carrier(0),
                    leg_id1=path.get_leg_id(0),
                    carrier2=None,
                    leg_id2=None,
                    carrier3=None,
                    leg_id3=None,
                    booking_class=pc.booking_class,
                    avg_sold=avg_sold,
                    avg_sold_priceable=avg_sold_priceable,
                    avg_rev=avg_rev,
                )
                if path.num_legs() == 1:
                    path_class_df.append(data)
                elif path.num_legs() == 2:
                    data["carrier2"] = path.get_leg_carrier(1)
                    data["leg_id2"] = path.get_leg_id(1)
                    path_class_df.append(data)
                elif path.num_legs() == 3:
                    data["carrier2"] = path.get_leg_carrier(1)
                    data["leg_id2"] = path.get_leg_id(1)
                    data["carrier3"] = path.get_leg_carrier(2)
                    data["leg_id3"] = path.get_leg_id(2)
                    path_class_df.append(data)
                else:
                    raise NotImplementedError("path with more than 3 legs")
        path_class_df = pd.DataFrame(path_class_df)
        if not path_class_df.empty:
            path_class_df.sort_values(by=["orig", "dest", "carrier1", "leg_id1", "booking_class"])
            #        if to_db and to_db.is_open:
            #            to_db.save_dataframe("path_class_summary", path_class_df)
        return path_class_df

    def compute_carrier_report(
        self,
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        """
        Compute a carrier summary table.

        The resulting table has one row per simulated carrier, and the following
        columns:

        - name
        - avg_sold
        - load_factor
        - avg_rev
        - asm (available seat miles)
        - rpm (revenue passenger miles)
        """
        num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)
        carrier_df = []

        carrier_asm = defaultdict(float)
        carrier_rpm = defaultdict(float)
        carrier_leg_lf = defaultdict(float)
        carrier_leg_count = defaultdict(float)
        for leg in sim.legs:
            carrier_name = leg.carrier_name if hasattr(leg, "carrier_name") else leg.carrier  # TODO: remove hasattr
            carrier_asm[carrier_name] += leg.distance * leg.capacity * num_samples
            carrier_rpm[carrier_name] += leg.distance * leg.gt_sold
            carrier_leg_lf[carrier_name] += leg.gt_sold / (leg.capacity * num_samples)
            carrier_leg_count[carrier_name] += 1

        for cxr in sim.carriers:
            avg_sold = cxr.gt_sold / num_samples
            avg_rev = cxr.gt_revenue / num_samples
            asm = carrier_asm[cxr.name] / num_samples
            rpm = carrier_rpm[cxr.name] / num_samples
            # sys_lf = 100.0 * cxr.gt_revenue_passenger_miles / asm if asm > 0 else 0.0
            denom = carrier_asm[cxr.name]
            sys_lf = (100.0 * carrier_rpm[cxr.name] / denom) if denom > 0 else 0
            if to_log:
                logger.info(
                    f"Carrier: {cxr.name}, AvgSold: {round(avg_sold, 2)}, LF {sys_lf:.2f}%,  AvgRev ${avg_rev:10,.2f}"
                )

            # Add up total ancillaries
            tot_anc_rev = 0.0
            for anc in cxr.ancillaries:
                print(str(anc))
                tot_anc_rev += anc.price * anc.sold

            carrier_df.append(
                {
                    "carrier": cxr.name,
                    "sold": avg_sold,
                    "sys_lf": sys_lf,
                    "avg_leg_lf": 100 * carrier_leg_lf[cxr.name] / max(carrier_leg_count[cxr.name], 1),
                    "avg_rev": avg_rev,
                    "avg_price": avg_rev / avg_sold if avg_sold > 0 else 0,
                    "asm": asm,
                    "rpm": rpm,
                    "yield": np.nan if rpm == 0 else avg_rev / rpm,
                    "ancillary_rev": tot_anc_rev,
                }
            )
        carrier_df = pd.DataFrame(carrier_df)
        if to_db and to_db.is_open:
            to_db.save_dataframe("carrier_summary", carrier_df)
        return carrier_df

    def compute_segmentation_by_timeframe(self) -> pd.DataFrame | None:
        if self.segmentation_data_by_timeframe:
            df = (
                pd.concat(self.segmentation_data_by_timeframe, axis=0, names=["trial"])
                .reorder_levels(["trial", "carrier", "booking_class", "days_prior"])
                .sort_index()
            )
            # df["Total"] = df.sum(axis=1)
            return df

    @staticmethod
    def compute_raw_load_factor_distribution(
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        """
        Compute a load factor distribution report.

        This report is a dataframe, with integer index values from 0 to 100,
        and column for each carrier in the simulation. The values are the
        frequency of each leg load factor observed during the simulation
        (excluding any burn period).  The values for leg load factors are
        rounded down, so that a leg load factor of 99.9% is counted as 99,
        and only actually sold-out flights are in the 100% bin.
        """
        result = {}
        for carrier in sim.carriers:
            lf = pd.Series(
                carrier.raw_load_factor_distribution(),
                index=pd.RangeIndex(101, name="leg_load_factor"),
                name="frequency",
            )
            result[carrier.name] = lf
        if result:
            df = pd.concat(result, axis=1, names=["carrier"])
        else:
            df = pd.DataFrame(index=pd.RangeIndex(101, name="leg_load_factor"), columns=[])
        if to_db and to_db.is_open:
            to_db.save_dataframe("raw_load_factor_distribution", df)
        return df

    @staticmethod
    def compute_leg_avg_load_factor_distribution(
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        """
        Compute a leg average load factor distribution report.

        This report is a dataframe, with integer index values from 0 to 100,
        and column for each carrier in the simulation. The values are the
        frequency of each leg average load factor observed over the simulation
        (excluding any burn period).  The values for leg average load factors
        are rounded down, so that a leg average load factor of 99.9% is counted
        as 99, and only always sold-out flights are in the 100% bin.

        This is different from the raw load factor distribution, which is the
        distribution of load factors across sample days.  The number of
        observations in the leg average load factor (this distribution) is
        equal to the number of legs, while the raw load factor distribution
        has one observation per leg per sample day.  The variance of this
        distribution is much lower than the raw load factor distribution.
        """
        idx = pd.RangeIndex(101, name="leg_load_factor")
        result = {carrier.name: pd.Series(np.zeros(101, dtype=np.int32), index=idx) for carrier in sim.carriers}
        for leg in sim.legs:
            try:
                lf = int(np.floor(leg.avg_load_factor()))
            except TypeError:
                # TODO: remove this
                lf = int(np.floor(leg.avg_load_factor))
            if lf > 100:
                lf = 100
            if lf < 0:
                lf = 0
            # TODO remove hasattr
            result[leg.carrier_name if hasattr(leg, "carrier_name") else leg.carrier].iloc[lf] += 1
        if result:
            df = pd.concat(result, axis=1, names=["carrier"])
        else:
            df = pd.DataFrame(index=pd.RangeIndex(101, name="leg_load_factor"), columns=[])
        if to_db and to_db.is_open:
            to_db.save_dataframe("leg_avg_load_factor_distribution", df)
        return df

    def compute_raw_fare_class_mix(
        self,
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        """
        Compute a fare class distribution report.

        This report is a dataframe, with index values giving the fare class,
        and column for each carrier in the simulation. The values are the
        number of passengers for each fare class observed during the simulation
        (excluding any burn period). This is a count of passengers not legs, so
        a passenger on a connecting itinerary only counts once.
        """
        result = {}
        for carrier in sim.carriers:
            fc = carrier.raw_fare_class_distribution()
            fc_sold = pd.Series(
                {k: v["sold"] for k, v in fc.items()},
                name="frequency",
            )
            fc_rev = pd.Series(
                {k: v["revenue"] for k, v in fc.items()},
                name="frequency",
            )
            result[carrier.name] = pd.concat([fc_sold, fc_rev], axis=1, keys=["sold", "revenue"]).rename_axis(
                index="booking_class"
            )
        if result:
            df = pd.concat(result, axis=0, names=["carrier"])
        else:
            df = pd.DataFrame(
                columns=["sold", "revenue"],
                index=pd.MultiIndex([[], []], [[], []], names=["carrier", "booking_class"]),
            )
        df = df.fillna(0)
        df["sold"] = df["sold"].astype(int)
        if to_db and to_db.is_open:
            to_db.save_dataframe("fare_class_distribution", df)
        return df

    @staticmethod
    def compute_bid_price_history(
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        """Compute the average bid price history for each carrier."""
        result = {}
        for carrier in sim.carriers:
            bp = carrier.raw_bid_price_trace()
            result[carrier.name] = (
                pd.DataFrame.from_dict(bp, orient="index").sort_index(ascending=False).rename_axis(index="days_prior")
            )
        if result:
            df = pd.concat(result, axis=0, names=["carrier"])
        else:
            df = pd.DataFrame(
                columns=[
                    "bid_price_mean",
                    "bid_price_stdev",
                    "some_cap_bid_price_mean",
                    "some_cap_bid_price_stdev",
                    "fraction_some_cap",
                    "fraction_zero_cap",
                ],
                index=pd.MultiIndex([[], []], [[], []], names=["carrier", "days_prior"]),
            )
        df = df.fillna(0)
        if to_db and to_db.is_open:
            to_db.save_dataframe("bid_price_history", df)
        return df

    @staticmethod
    def compute_displacement_history(
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        """Compute the average displacement cost history for each carrier."""
        result = {}
        for carrier in sim.carriers:
            bp = carrier.raw_displacement_cost_trace()
            result[carrier.name] = (
                pd.DataFrame.from_dict(bp, orient="index").sort_index(ascending=False).rename_axis(index="days_prior")
            )
        if result:
            df = pd.concat(result, axis=0, names=["carrier"])
        else:
            df = pd.DataFrame(
                columns=[
                    "displacement_mean",
                    "displacement_stdev",
                ],
                index=pd.MultiIndex([[], []], [[], []], names=["carrier", "days_prior"]),
            )
        df = df.fillna(0)
        if to_db and to_db.is_open:
            to_db.save_dataframe("displacement_history", df)
        return df

    @staticmethod
    def compute_demand_to_come_summary(
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        raw = sim.summary_demand_to_come()
        df = (
            from_nested_dict(raw, ["segment", "days_prior", "metric"])
            .sort_index(ascending=[True, False])
            .rename(columns={"mean": "mean_future_demand", "stdev": "stdev_future_demand"})
        )
        return df

    def compute_leg_local_fraction_distribution(
        self,
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        """
        Compute a report on the fraction of leg passengers who are local.

        This report is a dataframe, with integer index values from 0 to 100,
        and column for each carrier in the simulation. The values are the
        frequency of the local leg-passenger fraction on each leg observed
        over the simulation (excluding any burn period).  The values are
        rounded down, so that a leg local fraction of 99.9% is counted
        as 99, and only always-local flights are in the 100% bin.
        """
        result = {}
        for carrier in sim.carriers:
            lf = pd.Series(
                sim.distribution_local_leg_passengers(carrier),
                index=pd.RangeIndex(101, name="local_fraction"),
                name="frequency",
            )
            result[carrier.name] = lf
        if result:
            df = pd.concat(result, axis=1, names=["carrier"])
        else:
            df = pd.DataFrame(index=pd.RangeIndex(101, name="local_fraction"), columns=[])
        if to_db and to_db.is_open:
            to_db.save_dataframe("leg_local_fraction_distribution", df)
        return df

    def compute_local_fraction_by_place(
        self,
        sim: SimulationEngine,
        to_log: bool = True,
        to_db: database.Database | None = None,
    ) -> pd.DataFrame:
        """
        Compute a report on the fraction of leg passengers who are local.

        Parameters
        ----------
        sim
        to_log
        to_db

        Returns
        -------
        pd.DataFrame
        """
        result = {}
        for carrier in sim.carriers:
            df = pd.Series(
                sim.fraction_local_by_carrier_and_place(carrier.name),
                name=carrier.name,
            )
            result[carrier.name] = df
        if result:
            df = pd.concat(result, axis=1, names=["carrier"])
        else:
            df = pd.DataFrame(index=[], columns=[])
        if to_db and to_db.is_open:
            to_db.save_dataframe("local_fraction_by_place", df)
        return df

    def reseed(self, seed: int | list[int] | None = 42):
        """
        Reseed the simulation's random number generator.

        Parameters
        ----------
        seed : int, list[int], or None, default 42
            Seed value(s) for the random number generator. Can be a single
            integer, a list of integers, or None.

        Notes
        -----
        This method updates the random seed for the simulation's internal
        random number generator, affecting all subsequent random operations.
        """
        logger.debug("reseeding random_generator: %s", seed)
        self.eng.random_generator.seed(seed)

    def _user_certificate(self, certificate_filename=None):
        if certificate_filename:
            from cryptography.x509 import load_pem_x509_certificate

            certificate_filename = pathlib.Path(certificate_filename)
            with certificate_filename.open("rb") as f:
                user_cert = load_pem_x509_certificate(f.read())
        else:
            user_cert = self.eng.config.license_certificate
        return user_cert

    def validate_license(self, certificate_filename=None, future: int = 0):
        user_cert = self._user_certificate(certificate_filename)
        return self.eng.validate_license(user_cert, future=future)

    def license_info(self, certificate_filename=None):
        user_cert = self._user_certificate(certificate_filename)
        return self.eng.license_info(user_cert)

    @property
    def config(self) -> Config:
        """The configuration used for this Simulation."""
        return self.eng.config

    def run(
        self,
        log_reports: bool = False,
        *,
        single_trial: int | None = None,
        summarizer: type[SimulationTablesT] | SimulationTablesT | None = SimulationTables,
        rich_progress: Progress | None = None,
    ) -> SummaryTables | SimulationTablesT:
        """
        Run the simulation and compute reports.

        Parameters
        ----------
        log_reports : bool
        single_trial : int, optional
            Run only a single trial, with the given trial number (to get
            the correct fixed random seed, for example).
        summarizer : type[SimulationTables] | SimulationTables | None
            Use this summarizer to compute the reports.  If None, the
            reports are computed in the SummaryTables object; this option
            is deprecated and will eventually be removed.
        rich_progress : Progress, optional
            A rich Progress object to use for displaying progress.  If not
            provided, a new Progress object will be created unless the
            simulation configuration specifies not to show progress.

        Returns
        -------
        SimulationTables or SummaryTables
        """
        if summarizer is None:
            warnings.warn(
                "Using SummaryTables to compute reports is deprecated, prefer SimulationTables in new code.",
                DeprecationWarning,
                stacklevel=2,
            )

        start_time = time.time()
        self.setup_scenario()
        if single_trial is not None:
            self._run_sim_single_trial(single_trial, rich_progress=rich_progress)
        else:
            self._run_sim(rich_progress=rich_progress)
        if self.choice_set_file is not None:
            self.choice_set_file.close()
        logger.info("Computing reports")
        if summarizer is None:
            summary = self.compute_reports(
                self.eng,
                to_log=log_reports or self.eng.config.outputs.log_reports,
                additional=self.eng.config.outputs.reports,
            )
            logger.info("Saving reports")
            if self.eng.config.outputs.excel:
                summary.to_xlsx(self.eng.config.outputs.excel)
        else:
            if isinstance(summarizer, GenericSimulationTables):
                summary = summarizer._extract(self)
            elif issubclass(summarizer, GenericSimulationTables):
                summary = summarizer.extract(self)
            else:
                raise TypeError("summarizer must be an instance or subclass of GenericSimulationTables")

        # check all callbacks for tracers, and if any are found, write their
        # finalized data to callback_data
        for cb_group in [
            "daily_callbacks",
            "begin_sample_callbacks",
            "end_sample_callbacks",
        ]:
            for cb in getattr(self, cb_group, []):
                if isinstance(cb, GenericTracer):
                    summary.callback_data[cb.name] = cb.finalize()

        # write output files if designated
        if isinstance(summary, GenericSimulationTables):
            if self.config.outputs.html and (
                self.config.outputs.disk is True or self.config.outputs.html.filename == self.config.outputs.disk
            ):
                # this will ensure the html and disk files have the same timestamp
                filenames = summary.save(self.config.outputs.html.filename)
                summary._metadata["outputs.html_filename"] = filenames[".html"]
                summary._metadata["outputs.disk_filename"] = filenames[".pxsim"]
            else:
                if self.config.outputs.html:
                    out_filename = summary.to_html(self.config.outputs.html.filename)
                    summary._metadata["outputs.html_filename"] = out_filename
                if isinstance(self.config.outputs.disk, str | pathlib.Path):
                    out_filename = summary.to_file(self.config.outputs.disk)
                    summary._metadata["outputs.disk_filename"] = out_filename
            if self.config.outputs.pickle:
                pkl_filename = summary.to_pickle(self.config.outputs.pickle)
                summary._metadata["outputs.pickle_filename"] = pkl_filename
            if self.config.outputs.excel:
                summary.to_xlsx(self.config.outputs.excel)

        logger.info(f"Th' th' that's all folks !!!    (Elapsed time = {round(time.time() - start_time, 2)})")
        return summary

    def run_trial(self, trial: int, log_reports: bool = False) -> SummaryTables:
        self.setup_scenario()
        self.eng.trial = trial

        update_freq = self.update_frequency
        logger.debug(f"run_sim, num_trials = {self.eng.num_trials}, num_samples = {self.eng.num_samples}")
        self.db_writer.update_db_write_flags()
        n_samples_total = self.eng.num_samples
        n_samples_done = 0
        self.sample_done_callback(n_samples_done, n_samples_total)
        if self.eng.config.simulation_controls.show_progress_bar:
            progress = ProgressBar(total=n_samples_total)
        else:
            progress = DummyProgressBar()
        with progress:
            self._run_single_trial(
                trial,
                n_samples_done,
                n_samples_total,
                progress,
                update_freq,
            )
        summary = self.compute_reports(
            self.eng,
            to_log=log_reports or self.eng.config.outputs.log_reports,
            additional=self.eng.config.outputs.reports,
        )
        return summary

    def backup_db(self, dst: pathlib.Path | str | sqlite3.Connection):
        """Back up this database to another copy.

        Parameters
        ----------
        dst : Path-like or sqlite3.Connection
        """
        return self.cnx.backup(dst)

    def get_choice_parameters(self, choicemodel: str | ChoiceModel):
        """
        Get the parameters for a choice model.

        Parameters
        ----------
        choicemodel : str or ChoiceModel
            The choice model name (string) or ChoiceModel object to get
            parameters from.

        Returns
        -------
        dict
            Dictionary containing the choice model parameters, including
            restrictions and their associated sigma values.
        """
        if isinstance(choicemodel, str):
            choicemodel = self.choice_models[choicemodel]
        raw = choicemodel.get_parameters()
        r = raw.pop("restrictions", ())
        rsigma = raw.pop("restriction_sigmas", ())
        for rname, rval, rsig in zip(self._fare_restriction_list, r, rsigma):
            raw[f"restrictions_{rname}"] = rval
            raw[f"restrictions_{rname}_sigma"] = rsig
        return raw

    def set_choice_parameters(self, choicemodel: str | ChoiceModel, values: dict[str, float]):
        """
        Set the parameters for a choice model.

        Parameters
        ----------
        choicemodel : str or ChoiceModel
            The choice model name (string) or ChoiceModel object to update.
        values : dict[str, float]
            Dictionary of parameter names and their new values. Can include
            restriction parameters using the format 'restrictions_{name}'.
        """
        if isinstance(choicemodel, str):
            choicemodel = self.choice_models[choicemodel]
        raw = choicemodel.get_parameters()
        for k, v in values.items():
            if k.startswith("restrictions_"):
                if k.endswith("_sigma"):
                    kr = k[13:-6]
                else:
                    kr = k[13:]
                position = self._fare_restriction_mapping[kr] - 1
                if k.endswith("_sigma"):
                    raw["restriction_sigmas"][position] = v
                else:
                    raw["restrictions"][position] = v
            else:
                raw[k] = v
        choicemodel.set_parameters(raw)

airports instance-attribute

airports = {}

base_time property

base_time: int

The base time for the simulation.

Returns:

  • int

    The base time in seconds since the epoch.

bid_price_traces instance-attribute

bid_price_traces: dict[int, Any] = {}

Bid price traces for each carrier.

The key is the trial number, and the value is a dictionary with carrier names as keys and bid price traces as values.

callback_data instance-attribute

callback_data = CallbackData()

Data stored from callbacks.

This allows a user to store arbitrary data during a simulation using callbacks, and access it later.

capacity_multiplier instance-attribute

capacity_multiplier = 1.0

choice_models instance-attribute

choice_models = {}

choice_set_file instance-attribute

choice_set_file = None

choice_set_mkts instance-attribute

choice_set_mkts = []

choice_set_obs instance-attribute

choice_set_obs = 0

classes instance-attribute

classes = []

cnx instance-attribute

cnx = Database()

config property

config: Config

The configuration used for this Simulation.

db_writer instance-attribute

db_writer = None

dcp_list instance-attribute

dcp_list = [
    63,
    56,
    49,
    42,
    35,
    31,
    28,
    24,
    21,
    17,
    14,
    10,
    7,
    5,
    3,
    1,
    0,
]

debug instance-attribute

debug = False

demand_multiplier instance-attribute

demand_multiplier = 1.0

displacement_traces instance-attribute

displacement_traces: dict[int, Any] = {}

Displacement cost traces for each carrier.

The key is the trial number, and the value is a dictionary with carrier names as keys and displacement cost traces as values.

fare_details_revenue instance-attribute

fare_details_revenue = defaultdict(float)

fare_details_sold instance-attribute

fare_details_sold = defaultdict(int)

fare_details_sold_business instance-attribute

fare_details_sold_business = defaultdict(int)

fare_sales_by_carrier_dcp instance-attribute

fare_sales_by_carrier_dcp = defaultdict(int)

fare_sales_by_dcp instance-attribute

fare_sales_by_dcp = defaultdict(int)

file_writer instance-attribute

file_writer = FileWriter(output_dir)

frat5curves instance-attribute

frat5curves = {}

load_factor_curves instance-attribute

load_factor_curves = {}

random_generator instance-attribute

random_generator = Generator(42)

sample_done_callback instance-attribute

sample_done_callback = lambda n, n_total: None

segmentation_data_by_timeframe instance-attribute

segmentation_data_by_timeframe: dict[int, DataFrame] = {}

Bookings and revenue segmentation by timeframe.

The key is the trial number, and the value is a DataFrame with a breakdown of bookings and revenue by timeframe, customer segment, carrier, and booking class.

snapshot_filters property writable

snapshot_filters: list[SnapshotFilter] | None

Get the snapshot filters for the simulation.

Returns:

  • list[SnapshotFilter] or None

    List of snapshot filter objects, or None if simulation is not initialized.

todd_curves instance-attribute

todd_curves = {}

update_frequency instance-attribute

update_frequency = None

__init__

__init__(config: Config, output_dir: Path | None = None)

Initialize a Simulation instance.

Parameters:

  • config (Config) –

    The simulation configuration object. Will be revalidated during initialization.

  • output_dir (Path or None, default: None ) –

    Directory for output files. If None, a temporary directory will be created automatically.

Notes

This initializes the simulation with default parameters including DCP lists, choice models, and various data structures for tracking simulation results.

Source code in passengersim/driver.py
def __init__(
    self,
    config: Config,
    output_dir: pathlib.Path | None = None,
):
    """
    Initialize a Simulation instance.

    Parameters
    ----------
    config : Config
        The simulation configuration object. Will be revalidated during
        initialization.
    output_dir : pathlib.Path or None, optional
        Directory for output files. If None, a temporary directory
        will be created automatically.

    Notes
    -----
    This initializes the simulation with default parameters including
    DCP lists, choice models, and various data structures for tracking
    simulation results.
    """
    revalidate(config)
    super().__init__(config, output_dir)
    if config.simulation_controls.write_raw_files:
        try:
            from passengersim_core.utils import FileWriter
        except ImportError:
            self.file_writer = None
        else:
            self.file_writer = FileWriter.FileWriter(output_dir)
    else:
        self.file_writer = None
    self.db_writer = None
    self.dcp_list = [63, 56, 49, 42, 35, 31, 28, 24, 21, 17, 14, 10, 7, 5, 3, 1, 0]
    self.classes = []
    self.fare_sales_by_dcp = defaultdict(int)
    self.fare_sales_by_carrier_dcp = defaultdict(int)
    self.fare_details_sold = defaultdict(int)
    self.fare_details_sold_business = defaultdict(int)
    self.fare_details_revenue = defaultdict(float)
    self.demand_multiplier = 1.0
    self.capacity_multiplier = 1.0
    self.airports = {}
    self.choice_models = {}
    self.frat5curves = {}
    self.load_factor_curves = {}
    self.todd_curves = {}
    self.debug = False
    self.update_frequency = None
    self.random_generator = passengersim.core.Generator(42)
    self.sample_done_callback = lambda n, n_total: None
    self.choice_set_file = None
    self.choice_set_obs = 0
    self.choice_set_mkts = []
    self.segmentation_data_by_timeframe: dict[int, pd.DataFrame] = {}
    """Bookings and revenue segmentation by timeframe.

    The key is the trial number, and the value is a DataFrame with a
    breakdown of bookings and revenue by timeframe, customer segment,
    carrier, and booking class.
    """

    self.bid_price_traces: dict[int, Any] = {}
    """Bid price traces for each carrier.

    The key is the trial number, and the value is a dictionary with
    carrier names as keys and bid price traces as values."""

    self.displacement_traces: dict[int, Any] = {}
    """Displacement cost traces for each carrier.

    The key is the trial number, and the value is a dictionary with
    carrier names as keys and displacement cost traces as values."""

    self._fare_restriction_mapping = {}
    """Mapping of fare restriction names to restriction numbers."""

    self._fare_restriction_list = []
    """List of fare restriction names in the order they were added."""

    self._initialize(config)
    if not config.db:
        self.cnx = database.Database()
    else:
        self.cnx = database.Database(
            engine=config.db.engine,
            filename=config.db.filename,
            pragmas=config.db.pragmas,
            commit_count_delay=config.db.commit_count_delay,
        )
    if self.cnx.is_open:
        database.tables.create_table_leg_defs(self.cnx._connection, self.eng.legs)
        database.tables.create_table_fare_defs(self.cnx._connection, self.eng.fares)
        database.tables.create_table_fare_restriction_defs(self.cnx._connection, self._fare_restriction_list)
        database.tables.create_table_path_defs(self.cnx._connection, self.eng.paths)
        if config.db != ":memory:":
            self.cnx.save_configs(config)

    self.callback_data = CallbackData()
    """Data stored from callbacks.

    This allows a user to store arbitrary data during a simulation using callbacks,
    and access it later.
    """

backup_db

backup_db(dst: Path | str | Connection)

Back up this database to another copy.

Parameters:

  • dst (Path - like or Connection) –
Source code in passengersim/driver.py
def backup_db(self, dst: pathlib.Path | str | sqlite3.Connection):
    """Back up this database to another copy.

    Parameters
    ----------
    dst : Path-like or sqlite3.Connection
    """
    return self.cnx.backup(dst)

begin_sample

begin_sample(sample: int | None = None)

Begin processing a new sample in the simulation.

Parameters:

  • sample (int or None, default: None ) –

    The sample number to set. If None, the current sample number will be incremented by 1.

Notes

This method handles sample initialization including setting the random seed (if configured) and preparing the simulation state for the new sample.

Source code in passengersim/driver.py
def begin_sample(self, sample: int | None = None):
    """
    Begin processing a new sample in the simulation.

    Parameters
    ----------
    sample : int or None, optional
        The sample number to set. If None, the current sample number
        will be incremented by 1.

    Notes
    -----
    This method handles sample initialization including setting the
    random seed (if configured) and preparing the simulation state
    for the new sample.
    """
    if sample is None:
        # when sample is None, we simply increment the current sample number
        self.eng.sample += 1
    else:
        # otherwise, we set the sample number to the given value
        self.eng.sample = sample
    if self.eng.config.simulation_controls.random_seed is not None:
        self.reseed(
            [
                self.eng.config.simulation_controls.random_seed,
                self.eng.trial,
                self.eng.sample,
            ]
        )
    self.eng.reset_counters()
    self.generate_demands()

begin_trial

begin_trial(trial: int)

Beginning of trial processing.

Parameters:

  • trial (int) –

    The trial number.

Source code in passengersim/driver.py
def begin_trial(self, trial: int):
    """Beginning of trial processing.

    Parameters
    ----------
    trial : int
        The trial number.
    """
    self.eng.trial = trial
    logger.info("beginning trial %d", trial)
    self.eng.reset_trial_counters()

    for carrier in self.eng.carriers:
        # Initialize the histories all the various things that need them.
        # This is by-carrier, as the carriers may eventually have different
        # data requirements (sizes) for their history arrays.
        self.eng.initialize_histories(
            carrier,
            num_departures=26,  # TODO make this a parameter
            num_timeframes=len(self.dcp_list) - 1,
            truncation_rule=carrier.truncation_rule,
            store_priceable=bool(carrier.frat5),
            floating_closures=False,
            wipe_existing=True,
        )

capture_competitor_data

capture_competitor_data()

Capture competitor pricing data for all markets.

Notes

This method shops for the lowest prices in each market and stores competitor pricing information that can be used by revenue management systems for competitive analysis.

Source code in passengersim/driver.py
def capture_competitor_data(self):
    """
    Capture competitor pricing data for all markets.

    Notes
    -----
    This method shops for the lowest prices in each market and
    stores competitor pricing information that can be used by
    revenue management systems for competitive analysis.
    """
    for mkt in self.eng.markets.values():
        lowest = self.eng.shop(mkt.orig, mkt.dest)
        for cxr, price in lowest:
            mkt.set_competitor_price(cxr, price)

capture_dcp_data

capture_dcp_data(dcp_index, closures_only=False)

Capture data control point (DCP) data for revenue management.

Parameters:

  • dcp_index (int) –

    The index of the data control point.

  • closures_only (bool, default: False ) –

    Whether to capture only closure data or all DCP data.

Notes

This method captures seat availability, booking data, and other metrics at specific time points (DCPs) before departure, which is essential for revenue management decision making.

Source code in passengersim/driver.py
def capture_dcp_data(self, dcp_index, closures_only=False):
    """
    Capture data control point (DCP) data for revenue management.

    Parameters
    ----------
    dcp_index : int
        The index of the data control point.
    closures_only : bool, default False
        Whether to capture only closure data or all DCP data.

    Notes
    -----
    This method captures seat availability, booking data, and other
    metrics at specific time points (DCPs) before departure, which
    is essential for revenue management decision making.
    """
    for leg in self.eng.legs:
        leg.capture_dcp(dcp_index)
    for path in self.eng.paths:
        path.capture_dcp(dcp_index, closures_only=closures_only)
    for carrier in self.eng.carriers:
        if dcp_index > 0:
            carrier.current_tf_index += 1

compute_bid_price_history staticmethod

compute_bid_price_history(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame

Compute the average bid price history for each carrier.

Source code in passengersim/driver.py
@staticmethod
def compute_bid_price_history(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    """Compute the average bid price history for each carrier."""
    result = {}
    for carrier in sim.carriers:
        bp = carrier.raw_bid_price_trace()
        result[carrier.name] = (
            pd.DataFrame.from_dict(bp, orient="index").sort_index(ascending=False).rename_axis(index="days_prior")
        )
    if result:
        df = pd.concat(result, axis=0, names=["carrier"])
    else:
        df = pd.DataFrame(
            columns=[
                "bid_price_mean",
                "bid_price_stdev",
                "some_cap_bid_price_mean",
                "some_cap_bid_price_stdev",
                "fraction_some_cap",
                "fraction_zero_cap",
            ],
            index=pd.MultiIndex([[], []], [[], []], names=["carrier", "days_prior"]),
        )
    df = df.fillna(0)
    if to_db and to_db.is_open:
        to_db.save_dataframe("bid_price_history", df)
    return df

compute_carrier_report

compute_carrier_report(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame

Compute a carrier summary table.

The resulting table has one row per simulated carrier, and the following columns:

  • name
  • avg_sold
  • load_factor
  • avg_rev
  • asm (available seat miles)
  • rpm (revenue passenger miles)
Source code in passengersim/driver.py
def compute_carrier_report(
    self,
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    """
    Compute a carrier summary table.

    The resulting table has one row per simulated carrier, and the following
    columns:

    - name
    - avg_sold
    - load_factor
    - avg_rev
    - asm (available seat miles)
    - rpm (revenue passenger miles)
    """
    num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)
    carrier_df = []

    carrier_asm = defaultdict(float)
    carrier_rpm = defaultdict(float)
    carrier_leg_lf = defaultdict(float)
    carrier_leg_count = defaultdict(float)
    for leg in sim.legs:
        carrier_name = leg.carrier_name if hasattr(leg, "carrier_name") else leg.carrier  # TODO: remove hasattr
        carrier_asm[carrier_name] += leg.distance * leg.capacity * num_samples
        carrier_rpm[carrier_name] += leg.distance * leg.gt_sold
        carrier_leg_lf[carrier_name] += leg.gt_sold / (leg.capacity * num_samples)
        carrier_leg_count[carrier_name] += 1

    for cxr in sim.carriers:
        avg_sold = cxr.gt_sold / num_samples
        avg_rev = cxr.gt_revenue / num_samples
        asm = carrier_asm[cxr.name] / num_samples
        rpm = carrier_rpm[cxr.name] / num_samples
        # sys_lf = 100.0 * cxr.gt_revenue_passenger_miles / asm if asm > 0 else 0.0
        denom = carrier_asm[cxr.name]
        sys_lf = (100.0 * carrier_rpm[cxr.name] / denom) if denom > 0 else 0
        if to_log:
            logger.info(
                f"Carrier: {cxr.name}, AvgSold: {round(avg_sold, 2)}, LF {sys_lf:.2f}%,  AvgRev ${avg_rev:10,.2f}"
            )

        # Add up total ancillaries
        tot_anc_rev = 0.0
        for anc in cxr.ancillaries:
            print(str(anc))
            tot_anc_rev += anc.price * anc.sold

        carrier_df.append(
            {
                "carrier": cxr.name,
                "sold": avg_sold,
                "sys_lf": sys_lf,
                "avg_leg_lf": 100 * carrier_leg_lf[cxr.name] / max(carrier_leg_count[cxr.name], 1),
                "avg_rev": avg_rev,
                "avg_price": avg_rev / avg_sold if avg_sold > 0 else 0,
                "asm": asm,
                "rpm": rpm,
                "yield": np.nan if rpm == 0 else avg_rev / rpm,
                "ancillary_rev": tot_anc_rev,
            }
        )
    carrier_df = pd.DataFrame(carrier_df)
    if to_db and to_db.is_open:
        to_db.save_dataframe("carrier_summary", carrier_df)
    return carrier_df

compute_class_dist

compute_class_dist(
    sim: SimulationEngine,
    to_log=True,
    to_db: Database | None = None,
)
Source code in passengersim/driver.py
def compute_class_dist(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
    # Get unique segments
    segs = set([dmd.segment for dmd in sim.demands])
    dist = defaultdict(int)
    for f in sim.fares:
        for seg in segs:
            k = (f.booking_class, seg)
            try:
                dist[k] += f.get_sales_by_segment(seg)
            except Exception:
                # If the segment isn't found, just ignore it.
                # i.e. basic economy won't book Y0
                pass

    class_dist_df = []
    for (cls, seg), sold in dist.items():
        class_dist_df.append(dict(booking_class=cls, segment=seg, sold=sold))
    class_dist_df = pd.DataFrame(class_dist_df)
    return class_dist_df

compute_demand_report

compute_demand_report(
    sim: SimulationEngine,
    to_log=True,
    to_db: Database | None = None,
)

Compute a demand report for the simulation.

Parameters:

  • sim (SimulationEngine) –

    The simulation engine instance to generate the report from.

  • to_log (bool, default: True ) –

    Whether to log the report summary.

  • to_db (Database or None, default: None ) –

    Database connection to write the report to.

Returns:

  • DataFrame

    DataFrame containing demand statistics including origin, destination, segment, sold units, revenue, and other metrics.

Source code in passengersim/driver.py
def compute_demand_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
    """
    Compute a demand report for the simulation.

    Parameters
    ----------
    sim : SimulationEngine
        The simulation engine instance to generate the report from.
    to_log : bool, default True
        Whether to log the report summary.
    to_db : database.Database or None, optional
        Database connection to write the report to.

    Returns
    -------
    pd.DataFrame
        DataFrame containing demand statistics including origin,
        destination, segment, sold units, revenue, and other metrics.
    """
    dmd_df = []
    for m in sim.demands:
        avg_price = m.revenue / m.sold if m.sold > 0 else 0
        dmd_df.append(
            dict(
                orig=m.orig,
                dest=m.dest,
                segment=m.segment,
                sold=m.sold,
                revenue=m.revenue,
                avg_fare=m.revenue / m.sold if m.sold > 0 else 0,
                gt_demand=m.gt_demand,
                gt_sold=m.gt_sold,
                gt_revenue=m.gt_revenue,
            )
        )
        if to_log:
            logger.info(
                f"   Dmd: {m.orig}-{m.dest}:{m.segment}"
                f"  Sold = {m.sold},  "
                f"Rev = {m.revenue}, "
                f"AvgFare = {avg_price:.2f}"
            )
    dmd_df = pd.DataFrame(dmd_df)
    if to_db and to_db.is_open:
        to_db.save_dataframe("demand_summary", dmd_df)
    return dmd_df

compute_demand_to_come_summary staticmethod

compute_demand_to_come_summary(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame
Source code in passengersim/driver.py
@staticmethod
def compute_demand_to_come_summary(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    raw = sim.summary_demand_to_come()
    df = (
        from_nested_dict(raw, ["segment", "days_prior", "metric"])
        .sort_index(ascending=[True, False])
        .rename(columns={"mean": "mean_future_demand", "stdev": "stdev_future_demand"})
    )
    return df

compute_displacement_history staticmethod

compute_displacement_history(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame

Compute the average displacement cost history for each carrier.

Source code in passengersim/driver.py
@staticmethod
def compute_displacement_history(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    """Compute the average displacement cost history for each carrier."""
    result = {}
    for carrier in sim.carriers:
        bp = carrier.raw_displacement_cost_trace()
        result[carrier.name] = (
            pd.DataFrame.from_dict(bp, orient="index").sort_index(ascending=False).rename_axis(index="days_prior")
        )
    if result:
        df = pd.concat(result, axis=0, names=["carrier"])
    else:
        df = pd.DataFrame(
            columns=[
                "displacement_mean",
                "displacement_stdev",
            ],
            index=pd.MultiIndex([[], []], [[], []], names=["carrier", "days_prior"]),
        )
    df = df.fillna(0)
    if to_db and to_db.is_open:
        to_db.save_dataframe("displacement_history", df)
    return df

compute_fare_report

compute_fare_report(
    sim: SimulationEngine,
    to_log=True,
    to_db: Database | None = None,
)
Source code in passengersim/driver.py
def compute_fare_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
    fare_df = []
    for f in sim.fares:
        for dcp_index, days_prior in enumerate(self.dcp_list):
            fare_df.append(
                dict(
                    carrier=f.carrier.name,
                    orig=f.orig,
                    dest=f.dest,
                    booking_class=f.booking_class,
                    dcp_index=dcp_index,
                    price=f.price,
                    sold=f.get_sales_by_dcp2(days_prior),
                    gt_sold=f.gt_sold,
                    avg_adjusted_price=f.get_adjusted_by_dcp(dcp_index),
                )
            )
            if to_log:
                logger.info(
                    f"   Fare: {f.carrier} {f.orig}-{f.dest}:{f.booking_class}"
                    # f"AvgAdjFare = {avg_adj_price:.2f},"
                    f"  Sold = {f.sold},  "
                    f"Price = {f.price}"
                )
    fare_df = pd.DataFrame(fare_df)
    #        if to_db and to_db.is_open:
    #            to_db.save_dataframe("fare_summary", fare_df)
    return fare_df

compute_leg_avg_load_factor_distribution staticmethod

compute_leg_avg_load_factor_distribution(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame

Compute a leg average load factor distribution report.

This report is a dataframe, with integer index values from 0 to 100, and column for each carrier in the simulation. The values are the frequency of each leg average load factor observed over the simulation (excluding any burn period). The values for leg average load factors are rounded down, so that a leg average load factor of 99.9% is counted as 99, and only always sold-out flights are in the 100% bin.

This is different from the raw load factor distribution, which is the distribution of load factors across sample days. The number of observations in the leg average load factor (this distribution) is equal to the number of legs, while the raw load factor distribution has one observation per leg per sample day. The variance of this distribution is much lower than the raw load factor distribution.

Source code in passengersim/driver.py
@staticmethod
def compute_leg_avg_load_factor_distribution(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    """
    Compute a leg average load factor distribution report.

    This report is a dataframe, with integer index values from 0 to 100,
    and column for each carrier in the simulation. The values are the
    frequency of each leg average load factor observed over the simulation
    (excluding any burn period).  The values for leg average load factors
    are rounded down, so that a leg average load factor of 99.9% is counted
    as 99, and only always sold-out flights are in the 100% bin.

    This is different from the raw load factor distribution, which is the
    distribution of load factors across sample days.  The number of
    observations in the leg average load factor (this distribution) is
    equal to the number of legs, while the raw load factor distribution
    has one observation per leg per sample day.  The variance of this
    distribution is much lower than the raw load factor distribution.
    """
    idx = pd.RangeIndex(101, name="leg_load_factor")
    result = {carrier.name: pd.Series(np.zeros(101, dtype=np.int32), index=idx) for carrier in sim.carriers}
    for leg in sim.legs:
        try:
            lf = int(np.floor(leg.avg_load_factor()))
        except TypeError:
            # TODO: remove this
            lf = int(np.floor(leg.avg_load_factor))
        if lf > 100:
            lf = 100
        if lf < 0:
            lf = 0
        # TODO remove hasattr
        result[leg.carrier_name if hasattr(leg, "carrier_name") else leg.carrier].iloc[lf] += 1
    if result:
        df = pd.concat(result, axis=1, names=["carrier"])
    else:
        df = pd.DataFrame(index=pd.RangeIndex(101, name="leg_load_factor"), columns=[])
    if to_db and to_db.is_open:
        to_db.save_dataframe("leg_avg_load_factor_distribution", df)
    return df

compute_leg_local_fraction_distribution

compute_leg_local_fraction_distribution(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame

Compute a report on the fraction of leg passengers who are local.

This report is a dataframe, with integer index values from 0 to 100, and column for each carrier in the simulation. The values are the frequency of the local leg-passenger fraction on each leg observed over the simulation (excluding any burn period). The values are rounded down, so that a leg local fraction of 99.9% is counted as 99, and only always-local flights are in the 100% bin.

Source code in passengersim/driver.py
def compute_leg_local_fraction_distribution(
    self,
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    """
    Compute a report on the fraction of leg passengers who are local.

    This report is a dataframe, with integer index values from 0 to 100,
    and column for each carrier in the simulation. The values are the
    frequency of the local leg-passenger fraction on each leg observed
    over the simulation (excluding any burn period).  The values are
    rounded down, so that a leg local fraction of 99.9% is counted
    as 99, and only always-local flights are in the 100% bin.
    """
    result = {}
    for carrier in sim.carriers:
        lf = pd.Series(
            sim.distribution_local_leg_passengers(carrier),
            index=pd.RangeIndex(101, name="local_fraction"),
            name="frequency",
        )
        result[carrier.name] = lf
    if result:
        df = pd.concat(result, axis=1, names=["carrier"])
    else:
        df = pd.DataFrame(index=pd.RangeIndex(101, name="local_fraction"), columns=[])
    if to_db and to_db.is_open:
        to_db.save_dataframe("leg_local_fraction_distribution", df)
    return df

compute_leg_report

compute_leg_report(
    sim: SimulationEngine,
    to_log=True,
    to_db: Database | None = None,
)
Source code in passengersim/driver.py
def compute_leg_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
    num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)
    leg_df = []
    for leg in sim.legs:
        # Checking consistency while I debug the cabin code
        sum_b1, sum_b2 = 0, 0
        for b in leg.buckets:
            sum_b1 += b.sold
        for c in leg.cabins:
            for b in c.buckets:
                sum_b2 += b.sold
        if sum_b1 != sum_b2:
            print("Oh, crap!")
        avg_sold = leg.gt_sold / num_samples
        avg_rev = leg.gt_revenue / num_samples
        lf = 100.0 * leg.gt_sold / (leg.capacity * num_samples)
        if to_log:
            logger.info(
                f"    Leg: {leg.carrier}:{leg.flt_no} {leg.orig}-{leg.dest}: "
                f" AvgSold = {avg_sold:6.2f},  AvgRev = ${avg_rev:,.2f}, "
                f"LF = {lf:,.2f}%"
            )
        leg_df.append(
            dict(
                leg_id=leg.leg_id,
                carrier=leg.carrier_name,
                flt_no=leg.flt_no,
                orig=leg.orig,
                dest=leg.dest,
                avg_sold=avg_sold,
                avg_rev=avg_rev,
                lf=lf,
            )
        )
    leg_df = pd.DataFrame(leg_df)
    if to_db and to_db.is_open:
        to_db.save_dataframe("leg_summary", leg_df)
    return leg_df

compute_local_fraction_by_place

compute_local_fraction_by_place(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame

Compute a report on the fraction of leg passengers who are local.

Parameters:

Returns:

  • DataFrame
Source code in passengersim/driver.py
def compute_local_fraction_by_place(
    self,
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    """
    Compute a report on the fraction of leg passengers who are local.

    Parameters
    ----------
    sim
    to_log
    to_db

    Returns
    -------
    pd.DataFrame
    """
    result = {}
    for carrier in sim.carriers:
        df = pd.Series(
            sim.fraction_local_by_carrier_and_place(carrier.name),
            name=carrier.name,
        )
        result[carrier.name] = df
    if result:
        df = pd.concat(result, axis=1, names=["carrier"])
    else:
        df = pd.DataFrame(index=[], columns=[])
    if to_db and to_db.is_open:
        to_db.save_dataframe("local_fraction_by_place", df)
    return df

compute_path_class_report

compute_path_class_report(
    sim: SimulationEngine,
    to_log=True,
    to_db: Database | None = None,
)
Source code in passengersim/driver.py
def compute_path_class_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
    num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)

    path_class_df = []
    for path in sim.paths:
        for pc in path.pathclasses:
            avg_sold = pc.gt_sold / num_samples
            avg_sold_priceable = pc.gt_sold_priceable / num_samples
            avg_rev = pc.gt_revenue / num_samples
            if to_log:
                logger.info(f"{pc}, avg_sold={avg_sold:6.2f}, avg_rev=${avg_rev:10,.2f}")
            data = dict(
                orig=path.orig,
                dest=path.dest,
                carrier1=path.get_leg_carrier(0),
                leg_id1=path.get_leg_id(0),
                carrier2=None,
                leg_id2=None,
                carrier3=None,
                leg_id3=None,
                booking_class=pc.booking_class,
                avg_sold=avg_sold,
                avg_sold_priceable=avg_sold_priceable,
                avg_rev=avg_rev,
            )
            if path.num_legs() == 1:
                path_class_df.append(data)
            elif path.num_legs() == 2:
                data["carrier2"] = path.get_leg_carrier(1)
                data["leg_id2"] = path.get_leg_id(1)
                path_class_df.append(data)
            elif path.num_legs() == 3:
                data["carrier2"] = path.get_leg_carrier(1)
                data["leg_id2"] = path.get_leg_id(1)
                data["carrier3"] = path.get_leg_carrier(2)
                data["leg_id3"] = path.get_leg_id(2)
                path_class_df.append(data)
            else:
                raise NotImplementedError("path with more than 3 legs")
    path_class_df = pd.DataFrame(path_class_df)
    if not path_class_df.empty:
        path_class_df.sort_values(by=["orig", "dest", "carrier1", "leg_id1", "booking_class"])
        #        if to_db and to_db.is_open:
        #            to_db.save_dataframe("path_class_summary", path_class_df)
    return path_class_df

compute_path_report

compute_path_report(
    sim: SimulationEngine,
    to_log=True,
    to_db: Database | None = None,
)
Source code in passengersim/driver.py
def compute_path_report(self, sim: SimulationEngine, to_log=True, to_db: database.Database | None = None):
    num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)
    avg_lf, n = 0.0, 0
    for leg in sim.legs:
        lf = 100.0 * leg.gt_sold / (leg.capacity * num_samples)
        avg_lf += lf
        n += 1

    tot_rev = 0.0
    for m in sim.demands:
        tot_rev += m.revenue

    avg_lf = avg_lf / n if n > 0 else 0
    if to_log:
        logger.info(f"    LF:  {avg_lf:6.2f}%, Total revenue = ${tot_rev:,.2f}")

    path_df = []
    for path in sim.paths:
        avg_sold = path.gt_sold / num_samples
        avg_sold_priceable = path.gt_sold_priceable / num_samples
        avg_rev = path.gt_revenue / num_samples
        if to_log:
            logger.info(f"{path}, avg_sold={avg_sold:6.2f}, avg_rev=${avg_rev:10,.2f}")
        data = dict(
            orig=path.orig,
            dest=path.dest,
            carrier1=path.get_leg_carrier(0),
            leg_id1=path.get_leg_id(0),
            carrier2=None,
            leg_id2=None,
            carrier3=None,
            leg_id3=None,
            avg_sold=avg_sold,
            avg_sold_priceable=avg_sold_priceable,
            avg_rev=avg_rev,
        )
        if path.num_legs() == 1:
            path_df.append(data)
        elif path.num_legs() == 2:
            data["carrier2"] = path.get_leg_carrier(1)
            data["leg_id2"] = path.get_leg_id(1)
            path_df.append(data)
        elif path.num_legs() == 3:
            data["carrier2"] = path.get_leg_carrier(1)
            data["leg_id2"] = path.get_leg_id(1)
            data["carrier3"] = path.get_leg_carrier(2)
            data["leg_id3"] = path.get_leg_id(2)
            path_df.append(data)
        else:
            raise NotImplementedError("path with more than 3 legs")
    path_df = pd.DataFrame(path_df)
    if to_db and to_db.is_open:
        to_db.save_dataframe("path_summary", path_df)
    return path_df

compute_raw_fare_class_mix

compute_raw_fare_class_mix(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame

Compute a fare class distribution report.

This report is a dataframe, with index values giving the fare class, and column for each carrier in the simulation. The values are the number of passengers for each fare class observed during the simulation (excluding any burn period). This is a count of passengers not legs, so a passenger on a connecting itinerary only counts once.

Source code in passengersim/driver.py
def compute_raw_fare_class_mix(
    self,
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    """
    Compute a fare class distribution report.

    This report is a dataframe, with index values giving the fare class,
    and column for each carrier in the simulation. The values are the
    number of passengers for each fare class observed during the simulation
    (excluding any burn period). This is a count of passengers not legs, so
    a passenger on a connecting itinerary only counts once.
    """
    result = {}
    for carrier in sim.carriers:
        fc = carrier.raw_fare_class_distribution()
        fc_sold = pd.Series(
            {k: v["sold"] for k, v in fc.items()},
            name="frequency",
        )
        fc_rev = pd.Series(
            {k: v["revenue"] for k, v in fc.items()},
            name="frequency",
        )
        result[carrier.name] = pd.concat([fc_sold, fc_rev], axis=1, keys=["sold", "revenue"]).rename_axis(
            index="booking_class"
        )
    if result:
        df = pd.concat(result, axis=0, names=["carrier"])
    else:
        df = pd.DataFrame(
            columns=["sold", "revenue"],
            index=pd.MultiIndex([[], []], [[], []], names=["carrier", "booking_class"]),
        )
    df = df.fillna(0)
    df["sold"] = df["sold"].astype(int)
    if to_db and to_db.is_open:
        to_db.save_dataframe("fare_class_distribution", df)
    return df

compute_raw_load_factor_distribution staticmethod

compute_raw_load_factor_distribution(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: Database | None = None,
) -> DataFrame

Compute a load factor distribution report.

This report is a dataframe, with integer index values from 0 to 100, and column for each carrier in the simulation. The values are the frequency of each leg load factor observed during the simulation (excluding any burn period). The values for leg load factors are rounded down, so that a leg load factor of 99.9% is counted as 99, and only actually sold-out flights are in the 100% bin.

Source code in passengersim/driver.py
@staticmethod
def compute_raw_load_factor_distribution(
    sim: SimulationEngine,
    to_log: bool = True,
    to_db: database.Database | None = None,
) -> pd.DataFrame:
    """
    Compute a load factor distribution report.

    This report is a dataframe, with integer index values from 0 to 100,
    and column for each carrier in the simulation. The values are the
    frequency of each leg load factor observed during the simulation
    (excluding any burn period).  The values for leg load factors are
    rounded down, so that a leg load factor of 99.9% is counted as 99,
    and only actually sold-out flights are in the 100% bin.
    """
    result = {}
    for carrier in sim.carriers:
        lf = pd.Series(
            carrier.raw_load_factor_distribution(),
            index=pd.RangeIndex(101, name="leg_load_factor"),
            name="frequency",
        )
        result[carrier.name] = lf
    if result:
        df = pd.concat(result, axis=1, names=["carrier"])
    else:
        df = pd.DataFrame(index=pd.RangeIndex(101, name="leg_load_factor"), columns=[])
    if to_db and to_db.is_open:
        to_db.save_dataframe("raw_load_factor_distribution", df)
    return df

compute_reports

compute_reports(
    sim: SimulationEngine,
    to_log=True,
    to_db: bool | Database = True,
    additional=(
        "fare_class_mix",
        "load_factors",
        "total_demand",
    ),
) -> SummaryTables

Compute comprehensive simulation reports.

Parameters:

  • sim (SimulationEngine) –

    The simulation engine instance to generate reports from.

  • to_log (bool, default: True ) –

    Whether to log report summaries.

  • to_db (bool or Database, default: True ) –

    Database connection or boolean indicating whether to write reports to database.

  • additional (tuple, default: ('fare_class_mix', 'load_factors', 'total_demand') ) –

    Additional report types to include. Options include 'fare_class_mix', 'load_factors', 'total_demand'.

Returns:

  • SummaryTables

    Object containing all computed reports including leg, path, carrier, and other summary statistics.

Raises:

  • ValueError

    If no samples have been completed in the simulation.

Source code in passengersim/driver.py
def compute_reports(
    self,
    sim: SimulationEngine,
    to_log=True,
    to_db: bool | database.Database = True,
    additional=(
        "fare_class_mix",
        "load_factors",
        # "bookings_by_timeframe",
        "total_demand",
    ),
) -> SummaryTables:
    """
    Compute comprehensive simulation reports.

    Parameters
    ----------
    sim : SimulationEngine
        The simulation engine instance to generate reports from.
    to_log : bool, default True
        Whether to log report summaries.
    to_db : bool or database.Database, default True
        Database connection or boolean indicating whether to write
        reports to database.
    additional : tuple, optional
        Additional report types to include. Options include
        'fare_class_mix', 'load_factors', 'total_demand'.

    Returns
    -------
    SummaryTables
        Object containing all computed reports including leg, path,
        carrier, and other summary statistics.

    Raises
    ------
    ValueError
        If no samples have been completed in the simulation.
    """
    num_samples = sim.num_trials_completed * (sim.num_samples - sim.burn_samples)
    if num_samples <= 0:
        raise ValueError(
            "insufficient number of samples outside burn period for reporting"
            f"\n- num_trials = {sim.num_trials}"
            f"\n- num_samples = {sim.num_samples}"
            f"\n- burn_samples = {sim.burn_samples}"
        )

    if to_db is True:
        to_db = self.cnx
    class_dist_df = self.compute_class_dist(sim, to_log, to_db)
    dmd_df = self.compute_demand_report(sim, to_log, to_db)
    fare_df = self.compute_fare_report(sim, to_log, to_db)
    leg_df = self.compute_leg_report(sim, to_log, to_db)
    path_df = self.compute_path_report(sim, to_log, to_db)
    path_classes_df = self.compute_path_class_report(sim, to_log, to_db)
    carrier_df = self.compute_carrier_report(sim, to_log, to_db)
    segmentation_df = self.compute_segmentation_by_timeframe()
    raw_load_factor_dist_df = self.compute_raw_load_factor_distribution(sim, to_log, to_db)
    leg_avg_load_factor_dist_df = self.compute_leg_avg_load_factor_distribution(sim, to_log, to_db)
    fare_class_dist_df = self.compute_raw_fare_class_mix(sim, to_log, to_db)
    bid_price_history_df = self.compute_bid_price_history(sim, to_log, to_db)
    displacement_df = self.compute_displacement_history(sim, to_log, to_db)
    demand_to_come_df = self.compute_demand_to_come_summary(sim, to_log, to_db)
    local_fraction_dist_df = self.compute_leg_local_fraction_distribution(sim, to_log, to_db)
    local_fraction_by_place = self.compute_local_fraction_by_place(sim, to_log, to_db)

    summary = SummaryTables(
        name=sim.name,
        class_dist=class_dist_df,
        config=sim.config,
        demands=dmd_df,
        fares=fare_df,
        legs=leg_df,
        paths=path_df,
        path_classes=path_classes_df,
        carriers=carrier_df,
        bid_price_history=bid_price_history_df,
        raw_load_factor_distribution=raw_load_factor_dist_df,
        leg_avg_load_factor_distribution=leg_avg_load_factor_dist_df,
        raw_fare_class_mix=fare_class_dist_df,
        leg_local_fraction_distribution=local_fraction_dist_df,
        local_fraction_by_place=local_fraction_by_place,
        n_total_samples=num_samples,
        segmentation_by_timeframe=segmentation_df,
        displacement_history=displacement_df,
        demand_to_come_summary=demand_to_come_df,
    )
    summary.load_additional_tables(self.cnx, sim.name, sim.burn_samples, additional)
    summary.cnx = self.cnx
    return summary

compute_segmentation_by_timeframe

compute_segmentation_by_timeframe() -> DataFrame | None
Source code in passengersim/driver.py
def compute_segmentation_by_timeframe(self) -> pd.DataFrame | None:
    if self.segmentation_data_by_timeframe:
        df = (
            pd.concat(self.segmentation_data_by_timeframe, axis=0, names=["trial"])
            .reorder_levels(["trial", "carrier", "booking_class", "days_prior"])
            .sort_index()
        )
        # df["Total"] = df.sum(axis=1)
        return df

end_sample

end_sample()

End processing of the current sample.

Notes

This method records departure statistics to carrier-level counters, handles choice set and competitor data capture if configured, and performs other end-of-sample cleanup and data collection tasks.

Source code in passengersim/driver.py
def end_sample(self):
    """
    End processing of the current sample.

    Notes
    -----
    This method records departure statistics to carrier-level counters,
    handles choice set and competitor data capture if configured,
    and performs other end-of-sample cleanup and data collection tasks.
    """

    # Record the departure statistics to carrier-level counters in the simulation
    self.eng.record_departure_statistics()

    # Roll histories to next sample
    self.eng.next_departure()

    # Commit data to the database
    if self.cnx:
        try:
            self.cnx.commit()
        except AttributeError:
            pass

    # Are we capturing choice-set data?
    if self.choice_set_file is not None:
        if self.eng.sample > self.eng.burn_samples:
            cs = self.eng.get_choice_set()
            for line in cs:
                tmp = [str(z) for z in line]
                tmp2 = ",".join(tmp)
                print(tmp2, file=self.choice_set_file)
        self.eng.clear_choice_set()

    # Market share computation (MIDT-lite), might move to C++ in a future version
    alpha = 0.15
    for m in self.eng.markets.values():
        sold = float(m.sold)
        for a in self.eng.carriers:
            carrier_sold = m.get_carrier_sold(a.name)
            share = carrier_sold / sold if sold > 0 else 0
            if self.eng.sample > 1:
                try:
                    old_share = m.get_carrier_share(a.name)
                except KeyError:
                    old_share = 0.0
                new_share = alpha * share + (1.0 - alpha) * old_share
                m.set_carrier_share(a.name, new_share)
            else:
                m.set_carrier_share(a.name, share)

end_trial

end_trial()

End of trial processing.

Source code in passengersim/driver.py
def end_trial(self):
    """End of trial processing."""
    self.extract_segmentation_by_timeframe()
    self.extract_and_reset_bid_price_traces()
    if self.cnx.is_open:
        self.db_writer.final_write_to_sqlite(self.cnx._connection)

extract_and_reset_bid_price_traces

extract_and_reset_bid_price_traces()
Source code in passengersim/driver.py
def extract_and_reset_bid_price_traces(self):
    self.bid_price_traces[self.eng.trial] = {
        carrier.name: carrier.raw_bid_price_trace() for carrier in self.eng.carriers
    }
    self.displacement_traces[self.eng.trial] = {
        carrier.name: carrier.raw_displacement_cost_trace() for carrier in self.eng.carriers
    }
    for carrier in self.eng.carriers:
        carrier.reset_bid_price_trace()
        carrier.reset_displacement_cost_trace()

extract_segmentation_by_timeframe

extract_segmentation_by_timeframe()
Source code in passengersim/driver.py
def extract_segmentation_by_timeframe(
    self,
):
    # this should be run, if desired, at the end of each trial
    num_samples = self.eng.num_samples - self.eng.burn_samples
    top_level = {}
    for k in ("bookings", "revenue"):
        data = {}
        for carrier in self.eng.carriers:
            carrier_data = {}
            for segment, values in getattr(carrier, f"raw_{k}_by_segment_fare_dcp")().items():
                carrier_data[segment] = (
                    pd.DataFrame.from_dict(values, "columns")
                    .rename_axis(index="days_prior", columns="booking_class")
                    .stack()
                )
            if carrier_data:
                data[carrier.name] = pd.concat(carrier_data, axis=1, names=["segment"]).fillna(0) / num_samples
        # add non-bookings to the data dict
        if k == "bookings":
            non_bookings = pd.DataFrame.from_dict(self.eng.nonbookings_by_segment_dcp(), "columns").rename_axis(
                index="days_prior", columns="segment"
            )
            non_bookings["booking_class"] = "XX"
            data["NONE"] = non_bookings.reset_index().set_index(["days_prior", "booking_class"]) / num_samples
        if len(data) == 0:
            return None
        top_level[k] = pd.concat(data, axis=0, names=["carrier"])
    df = pd.concat(top_level, axis=1, names=["metric"])
    self.segmentation_data_by_timeframe[self.eng.trial] = df
    return df

generate_dcp_rm_events

generate_dcp_rm_events(debug=False)

Pushes an event per reading day (DCP) onto the queue. Also adds events for daily reoptimzation

Source code in passengersim/driver.py
def generate_dcp_rm_events(self, debug=False):
    """Pushes an event per reading day (DCP) onto the queue.
    Also adds events for daily reoptimzation"""
    dcp_hour = self.eng.config.simulation_controls.dcp_hour
    if debug:
        tmp = datetime.fromtimestamp(self.eng.base_time, tz=UTC)
        print(f"Base Time is {tmp.strftime('%Y-%m-%d %H:%M:%S %Z')}")
    for dcp_index, dcp in enumerate(self.dcp_list):
        if dcp == 0:
            continue
        event_time = int(self.eng.base_time - dcp * 86400 + 3600 * dcp_hour)
        if debug:
            tmp = datetime.fromtimestamp(event_time, tz=UTC)
            print(f"Added DCP {dcp} at {tmp.strftime('%Y-%m-%d %H:%M:%S %Z')}")
        info = ("DCP", dcp, dcp_index)
        rm_event = Event(info, event_time)
        self.eng.add_event(rm_event)

    # Now add the events for daily reoptimization
    max_days_prior = max(self.dcp_list)
    dcp_idx = 0
    for days_prior in reversed(range(max_days_prior)):
        if days_prior not in self.dcp_list:
            info = ("daily", days_prior, dcp_idx)
            event_time = int(self.eng.base_time - days_prior * 86400 + 3600 * dcp_hour)
            rm_event = Event(info, event_time)
            self.eng.add_event(rm_event)
        else:
            dcp_idx += 1

    # add events for begin and end sample callbacks
    self.add_callback_events()

generate_demands

generate_demands(system_rn=None, debug=False)

Generate demands following the procedure used in PODS.

Parameters:

  • system_rn (float or None, default: None ) –

    System random number. If None, a new random number will be generated using the simulation's random generator.

  • debug (bool, default: False ) –

    Whether to enable debug output during demand generation.

Source code in passengersim/driver.py
def generate_demands(self, system_rn=None, debug=False):
    """
    Generate demands following the procedure used in PODS.

    Parameters
    ----------
    system_rn : float or None, optional
        System random number. If None, a new random number will be
        generated using the simulation's random generator.
    debug : bool, default False
        Whether to enable debug output during demand generation.
    """
    self.generate_dcp_rm_events()
    total_events = 0
    system_rn = self.random_generator.get_normal() if system_rn is None else system_rn

    # We don't have an O&D object, but we use this to get a market random number
    # per market
    mrn_ref = {}

    # Need to have leisure / business split for PODS
    trn_ref = {
        "business": self.random_generator.get_normal(),
        "leisure": self.random_generator.get_normal(),
    }

    # this stores a random number per segment
    srn_ref = {}
    segment_k_factor = self.eng.config.simulation_controls.segment_k_factor

    def get_or_make_random(grouping, key):
        if key not in grouping:
            grouping[key] = self.random_generator.get_normal()
        return grouping[key]

    end_time = self.base_time

    for dmd in self.eng.demands:
        base = dmd.base_demand

        if dmd.deterministic:
            # Deterministic demand, no randomness
            dmd.scenario_demand = base
        else:
            # Get the random numbers we're going to use to perturb demand
            trn = get_or_make_random(trn_ref, (dmd.orig, dmd.dest, dmd.segment))
            mrn = get_or_make_random(mrn_ref, (dmd.orig, dmd.dest))
            if segment_k_factor:
                srn = get_or_make_random(srn_ref, dmd.segment)
            else:
                srn = 0
            if self.eng.config.simulation_controls.simple_cv100 > 0.0:
                sigma = self.eng.config.simulation_controls.simple_cv100 * sqrt(base) * 10.0
                urn = self.random_generator.get_normal() * sigma
            elif self.eng.config.simulation_controls.simple_k_factor:
                urn = self.random_generator.get_normal() * self.eng.config.simulation_controls.simple_k_factor
            else:
                urn = 0

            mu = base * (
                1.0
                + system_rn * self.eng.sys_k_factor
                + mrn * self.eng.mkt_k_factor
                + trn * self.eng.pax_type_k_factor
                + srn * segment_k_factor
                + urn
            )
            mu = max(mu, 0.0)
            sigma = sqrt(mu * self.eng.config.simulation_controls.tot_z_factor)  # Correct?
            n = mu + sigma * self.random_generator.get_normal()
            dmd.scenario_demand = max(n, 0)

            if debug:
                logger.debug(
                    f"DMD,{self.eng.sample},{dmd.orig},{dmd.dest},"
                    f"{dmd.segment},{dmd.base_demand},"
                    f"{round(mu, 2)},{round(sigma, 2)},{round(n, 2)}"
                )

        # Now we split it up over timeframes and add it to the simulation
        num_pax = int(dmd.scenario_demand + 0.5)  # rounding
        if self.eng.config.simulation_controls.timeframe_demand_allocation == "pods":
            num_events_by_tf = self.eng.allocate_demand_to_tf_pods(
                dmd, num_pax, self.eng.tf_k_factor, int(end_time)
            )
        else:
            num_events_by_tf = self.eng.allocate_demand_to_tf(dmd, num_pax, self.eng.tf_k_factor, int(end_time))
        num_events = sum(num_events_by_tf)
        total_events += num_events
        if num_events != round(num_pax):
            raise ValueError(f"Generate demand function, num_pax={num_pax}, num_events={num_events}")

    return total_events

generate_demands_gamma

generate_demands_gamma(system_rn=None, debug=False)

Using this as a quick test

Source code in passengersim/driver.py
def generate_demands_gamma(self, system_rn=None, debug=False):
    """Using this as a quick test"""
    self.generate_dcp_rm_events()
    end_time = self.base_time
    cv100 = 0.3
    for dmd in self.eng.demands:
        mu = dmd.base_demand
        std_dev = cv100 * sqrt(mu) * 10.0
        # std_dev = mu * 0.3
        var = std_dev**2
        shape_a = mu**2 / var
        scale_b = var / mu
        loc = 0.0
        r = gamma.rvs(shape_a, loc, scale_b, size=1)
        num_pax = int(r[0] + 0.5)
        dmd.scenario_demand = num_pax
        self.eng.allocate_demand_to_tf_pods(dmd, num_pax, self.eng.tf_k_factor, int(end_time))
    total_events = 0
    return total_events

get_choice_parameters

get_choice_parameters(choicemodel: str | ChoiceModel)

Get the parameters for a choice model.

Parameters:

  • choicemodel (str or ChoiceModel) –

    The choice model name (string) or ChoiceModel object to get parameters from.

Returns:

  • dict

    Dictionary containing the choice model parameters, including restrictions and their associated sigma values.

Source code in passengersim/driver.py
def get_choice_parameters(self, choicemodel: str | ChoiceModel):
    """
    Get the parameters for a choice model.

    Parameters
    ----------
    choicemodel : str or ChoiceModel
        The choice model name (string) or ChoiceModel object to get
        parameters from.

    Returns
    -------
    dict
        Dictionary containing the choice model parameters, including
        restrictions and their associated sigma values.
    """
    if isinstance(choicemodel, str):
        choicemodel = self.choice_models[choicemodel]
    raw = choicemodel.get_parameters()
    r = raw.pop("restrictions", ())
    rsigma = raw.pop("restriction_sigmas", ())
    for rname, rval, rsig in zip(self._fare_restriction_list, r, rsigma):
        raw[f"restrictions_{rname}"] = rval
        raw[f"restrictions_{rname}_sigma"] = rsig
    return raw

get_restriction_name

get_restriction_name(restriction_num: int) -> str

Convert restriction number to a restriction name.

Parameters:

  • restriction_num (int) –

    The numeric identifier for the restriction (must be >= 1).

Returns:

  • str

    The name of the restriction.

Raises:

  • IndexError

    If restriction_num is less than 1 or exceeds the number of defined restrictions.

Source code in passengersim/driver.py
def get_restriction_name(self, restriction_num: int) -> str:
    """
    Convert restriction number to a restriction name.

    Parameters
    ----------
    restriction_num : int
        The numeric identifier for the restriction (must be >= 1).

    Returns
    -------
    str
        The name of the restriction.

    Raises
    ------
    IndexError
        If restriction_num is less than 1 or exceeds the number
        of defined restrictions.
    """
    if restriction_num < 1:
        raise IndexError(restriction_num)
    return self._fare_restriction_list[restriction_num - 1]

license_info

license_info(certificate_filename=None)
Source code in passengersim/driver.py
def license_info(self, certificate_filename=None):
    user_cert = self._user_certificate(certificate_filename)
    return self.eng.license_info(user_cert)

parse_restriction_flags

parse_restriction_flags(
    restriction_flags: int,
) -> list[str]

Convert restriction flags to a list of restriction names.

Parameters:

  • restriction_flags (int) –

    Integer bit flags representing which restrictions are active.

Returns:

  • list[str]

    List of restriction names corresponding to the set flags.

Source code in passengersim/driver.py
def parse_restriction_flags(self, restriction_flags: int) -> list[str]:
    """
    Convert restriction flags to a list of restriction names.

    Parameters
    ----------
    restriction_flags : int
        Integer bit flags representing which restrictions are active.

    Returns
    -------
    list[str]
        List of restriction names corresponding to the set flags.
    """
    result = []
    rest_num = 1
    rest_names = self._fare_restriction_list
    while restriction_flags:
        if restriction_flags & 1:
            result.append(rest_names[rest_num - 1])
        rest_num += 1
        restriction_flags >>= 1
    return result

reseed

reseed(seed: int | list[int] | None = 42)

Reseed the simulation's random number generator.

Parameters:

  • seed (int, list[int], or None, default: 42 ) –

    Seed value(s) for the random number generator. Can be a single integer, a list of integers, or None.

Notes

This method updates the random seed for the simulation's internal random number generator, affecting all subsequent random operations.

Source code in passengersim/driver.py
def reseed(self, seed: int | list[int] | None = 42):
    """
    Reseed the simulation's random number generator.

    Parameters
    ----------
    seed : int, list[int], or None, default 42
        Seed value(s) for the random number generator. Can be a single
        integer, a list of integers, or None.

    Notes
    -----
    This method updates the random seed for the simulation's internal
    random number generator, affecting all subsequent random operations.
    """
    logger.debug("reseeding random_generator: %s", seed)
    self.eng.random_generator.seed(seed)

run

run(
    log_reports: bool = False,
    *,
    single_trial: int | None = None,
    summarizer: type[SimulationTablesT]
    | SimulationTablesT
    | None = SimulationTables,
    rich_progress: Progress | None = None,
) -> SummaryTables | SimulationTablesT

Run the simulation and compute reports.

Parameters:

  • log_reports (bool, default: False ) –
  • single_trial (int, default: None ) –

    Run only a single trial, with the given trial number (to get the correct fixed random seed, for example).

  • summarizer (type[SimulationTables] | SimulationTables | None, default: SimulationTables ) –

    Use this summarizer to compute the reports. If None, the reports are computed in the SummaryTables object; this option is deprecated and will eventually be removed.

  • rich_progress (Progress, default: None ) –

    A rich Progress object to use for displaying progress. If not provided, a new Progress object will be created unless the simulation configuration specifies not to show progress.

Returns:

Source code in passengersim/driver.py
def run(
    self,
    log_reports: bool = False,
    *,
    single_trial: int | None = None,
    summarizer: type[SimulationTablesT] | SimulationTablesT | None = SimulationTables,
    rich_progress: Progress | None = None,
) -> SummaryTables | SimulationTablesT:
    """
    Run the simulation and compute reports.

    Parameters
    ----------
    log_reports : bool
    single_trial : int, optional
        Run only a single trial, with the given trial number (to get
        the correct fixed random seed, for example).
    summarizer : type[SimulationTables] | SimulationTables | None
        Use this summarizer to compute the reports.  If None, the
        reports are computed in the SummaryTables object; this option
        is deprecated and will eventually be removed.
    rich_progress : Progress, optional
        A rich Progress object to use for displaying progress.  If not
        provided, a new Progress object will be created unless the
        simulation configuration specifies not to show progress.

    Returns
    -------
    SimulationTables or SummaryTables
    """
    if summarizer is None:
        warnings.warn(
            "Using SummaryTables to compute reports is deprecated, prefer SimulationTables in new code.",
            DeprecationWarning,
            stacklevel=2,
        )

    start_time = time.time()
    self.setup_scenario()
    if single_trial is not None:
        self._run_sim_single_trial(single_trial, rich_progress=rich_progress)
    else:
        self._run_sim(rich_progress=rich_progress)
    if self.choice_set_file is not None:
        self.choice_set_file.close()
    logger.info("Computing reports")
    if summarizer is None:
        summary = self.compute_reports(
            self.eng,
            to_log=log_reports or self.eng.config.outputs.log_reports,
            additional=self.eng.config.outputs.reports,
        )
        logger.info("Saving reports")
        if self.eng.config.outputs.excel:
            summary.to_xlsx(self.eng.config.outputs.excel)
    else:
        if isinstance(summarizer, GenericSimulationTables):
            summary = summarizer._extract(self)
        elif issubclass(summarizer, GenericSimulationTables):
            summary = summarizer.extract(self)
        else:
            raise TypeError("summarizer must be an instance or subclass of GenericSimulationTables")

    # check all callbacks for tracers, and if any are found, write their
    # finalized data to callback_data
    for cb_group in [
        "daily_callbacks",
        "begin_sample_callbacks",
        "end_sample_callbacks",
    ]:
        for cb in getattr(self, cb_group, []):
            if isinstance(cb, GenericTracer):
                summary.callback_data[cb.name] = cb.finalize()

    # write output files if designated
    if isinstance(summary, GenericSimulationTables):
        if self.config.outputs.html and (
            self.config.outputs.disk is True or self.config.outputs.html.filename == self.config.outputs.disk
        ):
            # this will ensure the html and disk files have the same timestamp
            filenames = summary.save(self.config.outputs.html.filename)
            summary._metadata["outputs.html_filename"] = filenames[".html"]
            summary._metadata["outputs.disk_filename"] = filenames[".pxsim"]
        else:
            if self.config.outputs.html:
                out_filename = summary.to_html(self.config.outputs.html.filename)
                summary._metadata["outputs.html_filename"] = out_filename
            if isinstance(self.config.outputs.disk, str | pathlib.Path):
                out_filename = summary.to_file(self.config.outputs.disk)
                summary._metadata["outputs.disk_filename"] = out_filename
        if self.config.outputs.pickle:
            pkl_filename = summary.to_pickle(self.config.outputs.pickle)
            summary._metadata["outputs.pickle_filename"] = pkl_filename
        if self.config.outputs.excel:
            summary.to_xlsx(self.config.outputs.excel)

    logger.info(f"Th' th' that's all folks !!!    (Elapsed time = {round(time.time() - start_time, 2)})")
    return summary

run_carrier_models

run_carrier_models(
    info: Any = None, departed: bool = False, debug=False
)

Run carrier revenue management models in response to events.

Parameters:

  • info (Any, default: None ) –

    Event information including event type and associated data.

  • departed (bool, default: False ) –

    Whether this is a departure event.

  • debug (bool, default: False ) –

    Whether to enable debug output.

Notes

This method processes various event types including callbacks, DCP events, passenger arrivals, and departures. It coordinates the execution of revenue management processes for all carriers.

Source code in passengersim/driver.py
def run_carrier_models(self, info: Any = None, departed: bool = False, debug=False):
    """
    Run carrier revenue management models in response to events.

    Parameters
    ----------
    info : Any, optional
        Event information including event type and associated data.
    departed : bool, default False
        Whether this is a departure event.
    debug : bool, default False
        Whether to enable debug output.

    Notes
    -----
    This method processes various event types including callbacks,
    DCP events, passenger arrivals, and departures. It coordinates
    the execution of revenue management processes for all carriers.
    """
    what_had_happened_was = []
    try:
        event_type = info[0]

        if event_type.startswith("callback_"):
            # This is a callback function, not a string event type
            # so, call it with the remaining arguments
            callback_t = event_type[9:]
            callback_f = info[1]
            result = callback_f(self, *info[2:])
            if isinstance(result, dict):
                self.callback_data.update_data(callback_t, self.eng.trial, self.eng.sample, *info[2:], **result)
            return

        recording_day = info[1]  # could in theory be non-integer for fractional days
        dcp_index = info[2]
        if dcp_index == -1:
            dcp_index = len(self.dcp_list) - 1

        if event_type.lower() in {"dcp", "done"}:
            self.eng.last_dcp = recording_day
            self.eng.last_dcp_index = dcp_index
            # self.capture_dcp_data(dcp_index)
            # self.capture_competitor_data()  # Simulates Infare / QL2

        # Run the specified process(es) for the carriers
        for carrier in self.eng.carriers:
            if isinstance(carrier.rm_system, RmSys):
                continue
            if carrier.rm_system is None:
                continue
            if event_type.lower() == "dcp":
                # Regular Data Collection Points (pre-departure)
                what_had_happened_was.append(f"run {carrier.name} DCP")
                carrier.rm_system.run(
                    self.eng,
                    carrier.name,
                    dcp_index,
                    recording_day,
                    event_type="dcp",
                )
            elif event_type.lower() == "daily":
                # Daily report, every day prior to departure EXCEPT specified DCPs
                what_had_happened_was.append(f"run {carrier.name} daily")
                carrier.rm_system.run(
                    self.eng,
                    carrier.name,
                    dcp_index,
                    recording_day,
                    event_type="daily",
                )
            elif event_type.lower() == "done":
                # Post departure processing
                what_had_happened_was.append(f"run {carrier.name} done")
                carrier.rm_system.run(
                    self.eng,
                    carrier.name,
                    dcp_index,
                    recording_day,
                    event_type="dcp",
                )
                carrier.rm_system.run(
                    self.eng,
                    carrier.name,
                    dcp_index,
                    recording_day,
                    event_type="departure",
                )
                if self.eng.sample % 7 == 0:
                    # Can be used less frequently,
                    # such as ML steps on accumulated data
                    carrier.rm_system.run(
                        self.eng,
                        carrier.name,
                        dcp_index,
                        recording_day,
                        event_type="weekly",
                    )

        # Internal simulation data capture that is normally done by RM systems
        if event_type.lower() in {"dcp", "done"}:
            self.eng.last_dcp = recording_day
            self.eng.last_dcp_index = dcp_index
            self.capture_dcp_data(dcp_index)
            what_had_happened_was.append("capture_dcp_close_data")
            if self.eng.config.simulation_controls.capture_competitor_data:
                self.capture_competitor_data()  # Simulates Infare / QL2

        # Database capture
        if event_type.lower() == "daily":
            if self.cnx.is_open and self.eng.save_timeframe_details and recording_day > 0:
                # if self.sim.sample == 101:
                #     print("write_to_sqlite DAILY")
                what_had_happened_was.append("write_to_sqlite daily")
                _internal_log = self.db_writer.write_to_sqlite(
                    self.cnx._connection,
                    recording_day,
                    store_bid_prices=self.eng.config.db.store_leg_bid_prices,
                    intermediate_day=True,
                    store_displacements=self.eng.config.db.store_displacements,
                )
        elif event_type.lower() in {"dcp", "done"}:
            if event_type.lower() == "done" and "forecast_accuracy" in self.config.outputs.reports:
                self.eng.capture_forecast_accuracy()
            if self.cnx.is_open:
                self.cnx.save_details(self.db_writer, self.eng, recording_day)
            if self.file_writer is not None:
                self.file_writer.save_details(self.eng, recording_day)

        # simulation statistics record
        if event_type.lower() in {"dcp", "done"}:
            self.eng.record_dcp_statistics(recording_day)
        self.eng.record_daily_statistics(recording_day)

    except Exception:
        # print(e)
        # print("Error in run_carrier_models")
        # print(f"{info=}")
        # print("what_had_happened_was=", what_had_happened_was)
        raise

run_single_sample

run_single_sample() -> int

Context manager to run the next sample in the current trial.

On entry, the sample number is run through to departure, so all sales have happened, but per-sample wrap up (e.g. rolling history forward, resetting counters) is deferred until exit. This is useful for running a single sample in a testing framework.

Yields:

  • int

    The sample number just completed.

Source code in passengersim/driver.py
@contextlib.contextmanager
def run_single_sample(self) -> int:
    """Context manager to run the next sample in the current trial.

    On entry, the sample number is run through to departure, so all
    sales have happened, but per-sample wrap up (e.g. rolling history
    forward, resetting counters) is deferred until exit.  This is useful
    for running a single sample in a testing framework.

    Yields
    ------
    int
        The sample number just completed.
    """
    if self.eng.trial < 0:
        warnings.warn(
            "Trial must be started before running a sample, implicitly starting Trial 0",
            skip_file_prefixes=_warn_skips,
            stacklevel=1,
        )
        self.begin_trial(0)
    self.begin_sample()
    while True:
        event = self.eng.go()
        self.run_carrier_models(event)
        if event is None or str(event) == "Done" or (event[0] == "Done"):
            assert self.eng.num_events() == 0, f"Event queue still has {self.eng.num_events()} events"
            break
    yield self.eng.sample
    self.end_sample()

run_trial

run_trial(
    trial: int, log_reports: bool = False
) -> SummaryTables
Source code in passengersim/driver.py
def run_trial(self, trial: int, log_reports: bool = False) -> SummaryTables:
    self.setup_scenario()
    self.eng.trial = trial

    update_freq = self.update_frequency
    logger.debug(f"run_sim, num_trials = {self.eng.num_trials}, num_samples = {self.eng.num_samples}")
    self.db_writer.update_db_write_flags()
    n_samples_total = self.eng.num_samples
    n_samples_done = 0
    self.sample_done_callback(n_samples_done, n_samples_total)
    if self.eng.config.simulation_controls.show_progress_bar:
        progress = ProgressBar(total=n_samples_total)
    else:
        progress = DummyProgressBar()
    with progress:
        self._run_single_trial(
            trial,
            n_samples_done,
            n_samples_total,
            progress,
            update_freq,
        )
    summary = self.compute_reports(
        self.eng,
        to_log=log_reports or self.eng.config.outputs.log_reports,
        additional=self.eng.config.outputs.reports,
    )
    return summary

set_choice_parameters

set_choice_parameters(
    choicemodel: str | ChoiceModel, values: dict[str, float]
)

Set the parameters for a choice model.

Parameters:

  • choicemodel (str or ChoiceModel) –

    The choice model name (string) or ChoiceModel object to update.

  • values (dict[str, float]) –

    Dictionary of parameter names and their new values. Can include restriction parameters using the format 'restrictions_{name}'.

Source code in passengersim/driver.py
def set_choice_parameters(self, choicemodel: str | ChoiceModel, values: dict[str, float]):
    """
    Set the parameters for a choice model.

    Parameters
    ----------
    choicemodel : str or ChoiceModel
        The choice model name (string) or ChoiceModel object to update.
    values : dict[str, float]
        Dictionary of parameter names and their new values. Can include
        restriction parameters using the format 'restrictions_{name}'.
    """
    if isinstance(choicemodel, str):
        choicemodel = self.choice_models[choicemodel]
    raw = choicemodel.get_parameters()
    for k, v in values.items():
        if k.startswith("restrictions_"):
            if k.endswith("_sigma"):
                kr = k[13:-6]
            else:
                kr = k[13:]
            position = self._fare_restriction_mapping[kr] - 1
            if k.endswith("_sigma"):
                raw["restriction_sigmas"][position] = v
            else:
                raw["restrictions"][position] = v
        else:
            raw[k] = v
    choicemodel.set_parameters(raw)

set_classes

set_classes(leg: Leg, _cabin, debug=False)
Source code in passengersim/driver.py
def set_classes(self, leg: passengersim.core.Leg, _cabin, debug=False):
    leg_classes = self.config.carriers[leg.carrier.name].classes
    cabin_code_list = [c.name for c in leg.cabins]
    if len(leg_classes) == 0:
        return
    cap = float(leg.capacity)
    if debug:
        print(leg, "Capacity = ", cap)
    history_def = leg.carrier.get_history_def()
    for bkg_class in leg_classes:
        # Input as a percentage
        auth = int(cap * self.init_rm.get(bkg_class, 100.0) / 100.0)
        if isinstance(bkg_class, tuple):
            # We are likely using multi-cabin, so unpack it
            (bkg_class, cabin_code) = bkg_class
        else:
            cabin_code = bkg_class[0]
        if cabin_code not in cabin_code_list:
            continue
        b = passengersim.core.Bucket(bkg_class, alloc=auth, history=history_def)
        b.cabin = cabin_code
        leg.add_bucket(b)
        if debug:
            print("    Added Bucket", leg, bkg_class, auth)

setup_scenario

setup_scenario() -> None

Set up the scenario for the simulation.

This will delete any existing data in the database under the same simulation name, build the connections if needed, and then call the vn_initial_mapping method to set up the initial mapping for the carriers using virtual nesting.

Source code in passengersim/driver.py
def setup_scenario(self) -> None:
    """
    Set up the scenario for the simulation.

    This will delete any existing data in the database under the same simulation
    name, build the connections if needed, and then call the vn_initial_mapping
    method to set up the initial mapping for the carriers using virtual nesting.
    """
    self.cnx.delete_experiment(self.eng.name)
    logger.debug("building connections")
    num_paths = self.eng.build_connections()
    self.eng.compute_hhi()
    if num_paths and self.cnx.is_open:
        database.tables.create_table_path_defs(self.cnx._connection, self.eng.paths)
    logger.debug(f"Connections done, num_paths = {num_paths}")
    self.eng.initialize_bucket_ap_rules()

    # start with default number of timeframes
    num_timeframes_default = len(self.config.dcps)
    if len(self.config.dcps) and self.config.dcps[-1] == 0:
        num_timeframes_default -= 1

    # initialize pathclasses for each carrier, using settings from the carrier
    # to size the history buffers
    # Also, Q-demand can be forecasted by pathclass even in the absence of bookings
    for carrier in self.eng.carriers:
        self.eng.initialize_pathclasses(carrier.get_history_def(), carrier.name)
        try:
            self.vn_initial_mapping(carrier.name)
        except Exception as e:
            print(e)

    # TODO: only initialize nonstop linkage when needed?
    self.eng.initialize_nonstop_path_linkage()

    # Compute a sampling probability to get approximately the number of
    # choice sets requested
    if self.choice_set_file is not None and self.choice_set_obs > 0:
        tot_dmd = 0
        for d in self.config.demands:
            if len(self.choice_set_mkts) == 0 or (d.orig, d.dest) in self.choice_set_mkts:
                tot_dmd += d.base_demand
        usable_samples = self.eng.num_trials * (self.eng.num_samples - self.eng.burn_samples)
        total_choice_sets = tot_dmd * usable_samples
        prob = self.choice_set_obs / total_choice_sets if total_choice_sets > 0 else 0
        self.eng.choice_set_sampling_probability = prob
        self.eng.choice_set_mkts = self.choice_set_mkts

validate_license

validate_license(
    certificate_filename=None, future: int = 0
)
Source code in passengersim/driver.py
def validate_license(self, certificate_filename=None, future: int = 0):
    user_cert = self._user_certificate(certificate_filename)
    return self.eng.validate_license(user_cert, future=future)

vn_initial_mapping

vn_initial_mapping(carrier_code)

Set up initial virtual nesting mapping for a carrier.

Parameters:

  • carrier_code (str) –

    The carrier code to set up virtual nesting mapping for.

Notes

This method assigns index values to path classes for carriers using virtual nesting, which allows revenue management systems to map between physical and virtual booking classes.

Source code in passengersim/driver.py
def vn_initial_mapping(self, carrier_code):
    """
    Set up initial virtual nesting mapping for a carrier.

    Parameters
    ----------
    carrier_code : str
        The carrier code to set up virtual nesting mapping for.

    Notes
    -----
    This method assigns index values to path classes for carriers
    using virtual nesting, which allows revenue management systems
    to map between physical and virtual booking classes.
    """
    for path in self.eng.paths:
        if path.get_leg_carrier(0) == carrier_code:
            for i, pc in enumerate(path.pathclasses):
                pc.set_index(0, i)